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A B S T R A C T   

Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance 
technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing 
products. This study addresses one of the major challenges facing model-data integration: To what spatial 
extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? 
We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the 
representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are 
often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation 
characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas 
across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area 
mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of 
magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface 
characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located 
in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent 
target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land 
cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land- 
surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in 
research and applications that benchmark against models and data products with explicit spatial information. We 
propose a simple representativeness index based on our evaluations that can be used as a guide to identify site- 
periods suitable for specific applications and to provide general guidance for data use.   

1. Introduction 

Global and regional networks of eddy-covariance towers such as 
those within the FLUXNET and the AmeriFlux provide the largest syn-
thesized in situ datasets of energy, water, carbon, and momentum fluxes 
between Earth’s surface and the atmosphere. By providing a global 
network of calibration and validation sites, flux networks serve as the 
cornerstone of the Earth Observing System (EOS) for global terrestrial 
vegetation monitoring (Running et al., 1999). The large datasets of 
greenhouse gas and energy surface-atmosphere fluxes are widely used to 
benchmark Earth system models (Chen et al., 2018; Ricciuto et al., 
2018) and flux data products that are based on satellite remote-sensing 
and machine-learning algorithm upscaling (Tramontana et al., 2016; 
Verma et al., 2015). While benchmarking models against flux data helps 
identify key model shortcomings and guide their development, the value 
of comparisons is greatest when the data are used to understand which 
processes matter at which spatial and temporal scales. This so-called 

"space-time representativeness issue" remains one of the major chal-
lenges facing model-data benchmarking (Durden et al., 2020; Hoffman 
et al., 2017). Adopting the definition in Nappo et al. (1982), represen-
tativeness describes the extent to which a set of (flux) measurements 
taken in a given space-time domain reflect the actual (flux) conditions in 
a different space-time domain. If focusing on the spatial aspect, the 
representativeness includes: 1) the network-to-region representative-
ness (Hargrove et al., 2003), i.e., to what extent do flux measurements 
taken at a relatively sparse network of tower locations reflect the 
aggregated flux conditions in a regional or global domain? 2) the 
point-to-area representativeness (Schmid, 1997), i.e., to what extent do 
flux measurements taken at a point (tower) location reflect the aggre-
gated conditions over an area that is represented by a model- or 
satellite-based grid cell? The point-to-area representativeness is of pri-
mary interest in the present manuscript. Our primary focus is on eval-
uating flux data’s representativeness and realizing that similar issues 
exist in models and other datasets (e.g., satellite data). 
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While data from eddy-covariance flux towers are well recognized for 
their rich temporal information (Baldocchi et al., 2001; Katul et al., 
2001; Stoy et al., 2009), few eddy-covariance sites are truly homoge-
neous, and thus, the spatially dynamic nature of these data is often 
overlooked by modeling and synthesis communities (Giannico et al., 
2018; Griebel et al., 2020). Briefly, the extent of the source area 
contributing to the flux at each observation time—the flux foot-
print—depends on the wind direction, relative measurement height, 
underlying vegetation- and ground-surface characteristics, and turbu-
lent state of the atmosphere (Schmid, 2002). When aggregating over 
time, the flux footprint climatology is essential to identify the spatial 
extents and temporal dynamics of the areas contributing to the observed 
fluxes at a tower site (Amiro, 1998). While the footprint concept has 
gained recognition among the flux community (e.g., Chasmer et al., 
2011; Helbig et al., 2016; Wang et al., 2006) and has been evaluated in a 
few regional-scale studies (Chen et al., 2012; Göckede et al., 2008; 
Wang et al., 2016), it was often omitted under the assumption of ho-
mogeneity at flux tower sites or out of necessity by large-scale syntheses 
and model-data benchmarking efforts (e.g., Heinsch et al., 2006; Jung 
et al., 2009; Verma et al., 2015). The main challenges include the lack of 
footprint information for many sites and difficulty in interpreting and 
incorporating footprint information into these modeling efforts (i.e., 
what flux towers observe vs. what models assume). Since most flux 
tower sites are located in more-or-less heterogeneous landscapes 
(Griebel et al., 2020; Stoy et al., 2013), the lack of "footprint awareness" 
leads to unknown biases and uncertainties in modeling and synthesis 
research (Metzger, 2018). 

Some approaches to addressing the spatial mismatch in previous 
model-data benchmarking research are summarized here. First, Earth 
system models typically have a model grid cell of around 108 m2 

(Hoffman et al., 2017; Williams et al., 2009) or 106 m2 in a few regional 
modeling cases (Buotte et al., 2019; Law et al., 2018), which are often 
several orders of magnitude larger than the flux footprints of around 
103–107 m2. Scale mismatch remains one of the key challenges and 
active research topics in model-data benchmarking (Durden et al., 2020; 
Hoffman et al., 2017; Metzger, 2018; Xu et al., 2020). Model-data 
benchmarking is often carried out using point scale simulations at in-
dividual sites (e.g., Bonan et al., 2012; Chaney et al., 2016; Chen et al., 
2018), prescribing with local meteorological forcing data, plant func-
tional type, and other site characteristics that neglect the heterogeneity 
within the flux footprint. In some cases, model simulations use 
spatially-explicit gridded forcing data (e.g., satellite-based leaf area 
index, climate reanalysis data) and assume forcing data from the nearest 
grid cell (e.g., ~105–109 m2) to represent the conditions at individual 
sites (Ricciuto et al., 2018; Williams et al., 2020). 

Second, remote-sensing data products and models that utilize mod-
erate spatial resolution satellite retrievals (e.g., Moderate Resolution 
Imaging Spectroradiometer—MODIS) have a grid cell of around 105–106 

m2, which is close to the spatial scale of typical flux footprints. The 
challenge is to incorporate the temporally dynamic footprints into the 
modeling frameworks. The moderate resolution can be insufficient for 
capturing the fine-scale spatial variation, as seen by the flux footprints in 
some cases (Robinson et al., 2018; Wagle et al., 2020; Yang et al., 2020). 
Many of the common global, gridded satellite products are themselves 
aggregated in time and space, e.g., via spatial averaging and compos-
iting over 16-day periods, which further compound the problem of 
matching flux to remote-sensing data, particularly during periods of 
disturbance or seasonal transition (Xin et al., 2013). Typically, a fixed 
set of pixels near the tower locations are selected (Heinsch et al., 2006; 
Verma et al., 2015; Zhang et al., 2017), assuming the flux conditions in 
the predefined areas represent the flux conditions observed by the flux 
footprints. Similar approaches and assumptions are also adopted in 
studies to extrapolate flux data to spatially-explicit data products (Jung 
et al., 2019; Xiao et al., 2014; Xiao et al., 2011) and to assess the 
representativeness of eddy-covariance networks at the regional and 
global scale (Chu et al., 2017; Villarreal et al., 2018; Villarreal et al., 

2019). 
Third, recent advances in fine resolution (e.g., ~102–103 m2) 

remote-sensing data products (e.g., ECOSTRESS, IKONOS, SPOT, 
CubeSats, Sentinel, MODIS-Landsat fusion) now enable the flux and 
remote-sensing data integration at a spatial scale sufficient to resolve the 
spatial variation as seen by the flux footprints (Anderson et al., 2018; 
Fisher et al., 2020; Yang et al., 2017). However, a similar approach that 
selects a fixed set of pixels near the tower locations is still commonly 
adopted because it lacks footprint information across sites. Alterna-
tively, a few studies adopt a prognostic approach pairing flux data with 
land surface characteristics at carefully selected pixels based on the 
prevailing wind direction and estimated source areas (DuBois et al., 
2018; Fisher et al., 2020). 

To date, network-wide footprint information is still unavailable or 
sparse in flux data products, including La Thuile 2007 and FLUX-
NET2015 (Papale et al., 2006; Pastorello et al., 2020; Pastorello et al., 
2017), which leads to unknown biases and uncertainties in the modeling 
and synthesis research as discussed above. While several cross-site 
footprint analyses existed (Chen et al., 2011; Chen et al., 2012; 
Göckede et al., 2008; Rebmann et al., 2005; Wang et al., 2016), none 
were carried out extensively across a large number of sites, e.g., FLUX-
NET, AmeriFlux. Also, the outcome of the footprint analyses was often 
not tailored for use by the modeling and synthesis communities. 
Fortunately, the flux measured at any given time can be traced back to 
its sources (i.e., spatial locations), providing us with an opportunity to 
connect the fluxes with land surface characteristics (e.g., land cover 
type, vegetation characteristics, landform). This study aims to reveal the 
importance of the network-wide flux footprint information to the 
modeling and synthesis communities. Our objectives are to 1) calculate 
and present the variation in the spatial distribution and extent of flux 
footprints across AmeriFlux sites, 2) evaluate the representativeness of 
flux footprints to target areas (i.e., areas within 250 m, 500 m, 1000 m, 
1500 m, 2000 m, and 3000 m radii around flux towers) that are 
commonly used in modeling and synthesis studies, and 3) construct 
simple site-specific representativeness indices that indicate the 
footprint-to-target-area representativeness and improve the uses and 
interpretation of flux data by the modeling and synthesis user 
community. 

2. Materials and Methods 

2.1. Overview 

To achieve our objectives, we: 1) calculated footprint climatologies 
for each site, 2) retrieved land surface characteristics in the footprint 
climatology areas and for a series of predefined target areas at each site, 
and compared land-surface characteristics between the footprint cli-
matologies and the target areas, and 3) evaluated footprint-to-target- 
area representativeness as described in Figure 1 and the subsequent 
sections. 

Monthly footprint climatologies were calculated for 214 AmeriFlux 
sites using a two-dimensional footprint model (Figure 1a–1b, Section 
2.2) (Kljun et al., 2015). Two land surface characteristics—one cate-
gorical (land cover type) and one continuous (vegetation index)—were 
retrieved at a fine resolution for each site to match the periods of foot-
print climatologies (Figure 1c–1d, Section 2.3). These land surface 
characteristics were used as proxies for representing the spatial varia-
tion of land conditions for the fluxes. We defined a series of target areas 
within 250 m, 500 m, 1000 m, 1500 m, 2000 m, and 3000 m radial 
distances from the tower at each site. The footprint-to-target-area 
representativeness was evaluated by comparing the land surface char-
acteristics covered by the footprint climatologies to that in the target 
areas (Figure 1e–1f, Section 2.4). These target areas were selected based 
on the spatial resolutions of grid cells/pixels used in previous modeling 
and synthesis studies. Finally, we proposed qualitative indices for the 
footprint-to-target-area representativeness for each AmeriFlux site. 
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2.2. Site selection and footprint calculation for AmeriFlux sites 

This study included 214 AmeriFlux sites that had all the required 
data (i.e., micrometeorological and land surface characteristics) and 
metadata (e.g., instrument height) (Tables S1 for a site list; Table S2 for 
site-selection criteria). The selected sites covered 13 International 
Geosphere-Biosphere Programme (IGBP) vegetation classes (Loveland 
et al., 1999) and spanned across 13 level-I ecoregions of North America 
(McMahon et al., 2004; Omernik, 2004). For clarity of visualization, we 
grouped the IGBP vegetation classes into 6, including evergreen nee-
dleleaf forests (59 sites; IGBP: ENF), broadleaf and mixed forests (32; 
DBF, EBF, MF), savannas and shrublands (28; WSA, SAV, CSH, OSH), 
grasslands and barren lands (42; GRA, BSV), croplands (34; CRO), and 
wetlands and snow/ice cover (19; WET, SNO). We grouped the ecor-
egions into 6, including boreal (42), eastern temperate (43), great plains 
(39), northwestern mountains and coasts (27), southern desert and 
semi-arid highlands (29), and Mediterranean California (21). Thirteen 
sites from the tundra, taiga, Hudson Plain, and tropical wet forests were 
not included in the ecoregion subgroups but still presented in the pooled 
results. 

Micrometeorological data for each site were obtained from the 
AmeriFlux BASE data product (https://ameriflux.lbl.gov/, accessed in 
December 2019), including horizontal wind speed, wind direction, 
friction velocity, Obukhov length, air temperature, humidity, incoming 
shortwave radiation, and sensible heat flux. Additionally, the standard 
deviation of cross-wind velocity (V_SIGMA) was obtained for 106 sites 
from the AmeriFlux BASE data product, or by contacting the site in-
vestigators. Most sites’ data had a half-hourly resolution, except the US- 
MMS, US-Ha1, US-Cop, US-Ne1, US-Ne2, and US-Ne3 sites, which had 
an hourly resolution. All of the following analyses used the data at their 
original temporal resolution (i.e., half-hourly, hourly). For sites with 
short data records (< 3 years), all available years were used. For sites 

with long data records, we selected 3–6 years based on data coverage 
and also the availability of the land surface characteristics (see Table S2 
for details of site-year selection and data filtering). Altogether, 712 site- 
years were used in the study, with the majority of years falling between 
2001–2018. 

We adopted the Flux Footprint Prediction (FFP) model (http://f 
ootprint.kljun.net/) of Kljun et al. (2015) for the footprint calcula-
tions. The FFP model is a dimensionalized parameterization of a back-
ward Lagrangian stochastic dispersion model (Kljun et al., 2002), which 
applies to a wide range of boundary layer stratifications and measure-
ment heights (Kljun et al., 2015). Most required variables for the FFP 
model were obtained from the AmeriFlux dataset as described above, 
with the following exceptions. Temporal changes in roughness lengths 
and zero-plane displacement heights were derived following Chu et al. 
(2018) weekly for cropland, grassland, and wetland sites where seasonal 
dynamics of canopy heights were expected, and annually for the 
shrubland, savanna, and forest sites. The planetary boundary layer 
height was calculated following Kljun et al. (2015), who used the 
Obukhov length, friction velocity, air temperature, and sensible heat 
flux in the calculations. For V_SIGMA, we developed an empirical model 
using the random forests machine-learning algorithm to predict 
V_SIGMA for sites with no data available (Text S1, Figures S1–S2, 
Table S3). The model was trained, validated, and tested using the 106 
sites with available V_SIGMA data. The model used six predictor vari-
ables (i.e., friction velocity, planetary boundary layer height, wind 
speed, incoming shortwave radiation, Obukhov stability parameter, and 
IGBP classifications) and showed robust performance against a withheld 
test dataset (R2 = 0.79, mean absolute error (MAE) = 0.15 m s− 1) and an 
independent dataset (R2 = 0.77, MAE = 0.16 m s− 1) collected using the 
portable eddy-covariance system by the AmeriFlux Tech Team through 
42 site visits (https://ameriflux.lbl.gov/tech/site-visits/) (Table S4). 
Details of the model validation and testing are described in the 

Fig. 1. Conceptual diagram illustrating the workflow for footprint-to-target-area representativeness analyses using data from US-Syv (2006), as an example, 
including the calculation of monthly footprint climatology (left panel), the overlay of monthly footprint climatology with land surface characteristics (middle panel), 
and the comparison of land surface characteristics between the footprints and target areas (right panel). Figures (a), (c), and (d) show the monthly daytime (red) and 
nighttime (blue) footprint climatologies (80% contour lines) overlaid on (a) a true-color Landsat satellite image, (c) a land cover classification map (e.g., National 
Land Cover Dataset products (NLCD)), and (d) an enhanced vegetation index (EVI) map (Landsat). Figure (b) illustrates a monthly footprint climatology. Yellow 
crosshairs in (a)–(d) indicate the tower location. White circles indicate boundaries of selected target areas at 250 m, 500 m, 1000 m, 1500 m radii. Figure (d) is the 
monthly footprint climatologies that cover the retrieval time of the underlying EVI map, with highlights in red and blue colors while the climatologies from other 
months are shown in grey colors. Figures (e) and (f) show the results of land cover percentages and EVI calculated from the footprints and target areas, which are then 
used to evaluate footprint-to-target-area representativeness. 
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Supplement (Text S1, Figures S1–S2, Table S3). 
The footprint calculations were carried out for each (half-)hour, 

generating a two-dimensional gridded map of footprint weights 
centered on the tower. All available footprint-weight maps in a month 
were aggregated to daytime and nighttime footprint climatologies 
(Amiro, 1998) (Figure 1a–1b). Daytime and nighttime were separated 
by the potential incoming radiation (i.e., > 0 W m− 2) calculated based 
on a site’s geolocation and time zone. In total, around 14,000 monthly 
footprint climatologies were generated for all sites combined (Datasets 
S1–S3). Because the uncertainty of footprint models increases with up-
wind distance from the receptor (Kljun et al., 2015), we truncated the 
footprint climatologies at the 80% contour of source weights for all 
subsequent analyses (Kim et al., 2018). As Schmid (1997) suggested, a 
point source located outside the 50% contour of source weights must be 
at least 5–10 times stronger than the point source at the maximum 
source weight location to achieve a similar sensor response. Our sensi-
tivity tests also showed that the 80% contour cutout selection had a 
marginal influence on the final results (Text S2, Figures S3–S7, 
Table S5). 

To summarize the footprint climatologies across sites, the following 
metrics were calculated. The footprint fetch (X80_day, X80_night (daytime, 
nighttime)) was defined by the maximal distance from the tower loca-
tion to the 80% footprint climatology contour. The footprint area 
(A80_day, A80_night) was defined by the areas enclosed by the 80% contour. 
Both footprint fetch and area were averaged from all available monthly 
footprint climatologies in a site-year. The footprint symmetry index 
(S80_day, S80_night) was calculated using the following equation: 

S80 day =
A80 day

π ×
(
X80 day

)2 (1)  

Equation 1 applies equivalently to S80_night. The symmetry index ranges 
from zero to one, with a value of one indicating a perfectly symmetric 
(circular) footprint climatology centered around the tower location. The 
footprint overlap indices included the seasonal overlap index (O80_sea-

son_day, O80_season_night) and daytime-nighttime overlap index (O80_day-

night) based on the following equations. Both overlap indices range from 
zero to one, with a value of one indicating perfectly overlapped footprint 
climatologies either across months (i.e., seasonal overlap) or between 
daytime and nighttime for each month. The overlap indices were 
calculated based on all available monthly footprint climatologies in a 
site-year. 

O80 season day =
∑I

i=1

(
∏K

k=1
φday
ik

)1/k

(2)  

O80 daynight =
1
K
∑K

k=1

∑I

i=1

(
φday
ik × φnight

ik

)1/2 (3)  

where i and k designate one pixel and one month, φday
ik and φnight

ik denote 
the daytime and nighttime footprint weights at i-pixel and k-month, 
respectively. I and K denote the total number of pixels within the foot-
print climatology and the number of months in a site-year, respectively. 
As we truncated the footprint climatologies at the 80% contours, the 
footprint weights were rescaled to sum up to unity within the 80% 
contours (e.g., 

∑I
i=1φ

day
ik = 1). The nighttime overlap index was calcu-

lated similarly using Equation 2. 

2.3. Land surface characteristics 

Two types of land surface characteristics—one continuous vegeta-
tion index and one categorical land cover type—were used in this study. 
We chose the enhanced vegetation index (EVI) derived from the Landsat 
images due to availability. EVI is closely related to vegetation and land 
cover variations, such as leaf area index (LAI), canopy type, plant 

physiognomy, and canopy architecture (Huete et al., 2002). Addition-
ally, EVI is an important land surface product often used in upscaling 
tower-observed CO2 fluxes and as a surrogate of CO2 fluxes when the 
true fluxes (e.g., spatial-explicit) are unavailable (Chen et al., 2011; Fu 
et al., 2014; Stoy et al., 2013; Xiao et al., 2014). Landsat’s 30 m nominal 
spatial resolution allows the characterization of landscape heterogeneity 
within the flux footprints. Landsat’s 16-day revisit cycle also allowed us 
to obtain multiple images per year. For each site, we collected all 
cloud-free (<1% within a 3000 m radius from the tower) Landsat-5/TM 
and Landsat-8/OLI scenes (USGS Collection Tier 1 atmospherically 
corrected surface reflectance) that overlapped with the flux measure-
ment periods. Landsat-7 ETM+ data were not considered due to large 
data gaps caused by the failure of Scan Line Corrector after 31 May 
2003. Landsat-5/TM and Landsat-8/OLI provided sufficient data for this 
study. After the collection of Landsat images, EVI was computed using 
the following equation (Huete et al., 2002): 

EVI = 2.5 ×
(ρNIR − ρRED)

(ρNIR + 6 × ρRED − 7.5 × ρBLUE + 1)
(4)  

where ρNIR, ρRED, and ρBLUE are the surface reflectance of near-infrared, 
red, and blue bands of the Landsat images, respectively. We automated 
the aforementioned process of image retrieval and EVI calculation in the 
Google Earth Engine cloud-computing platform. Altogether, around 
3,300 images were processed for the 214 AmeriFlux sites. 

We chose land cover type as the categorical characteristic because it 
is commonly used in modeling and upscaling studies (e.g., Fu et al., 
2014; Williams et al., 2009; Xiao et al., 2014). The land cover products 
used in this study include the 2001–2016 United States National Land 
Cover Dataset products (NLCD; https://www.mrlc.gov/) (Yang et al., 
2018) and 2010 Land Cover of Canada (https://open.canada.ca/) (Lat-
ifovic et al., 2017). Both products were derived from Landsat imagery 
with a spatial resolution of 30 m. For NLCD, we selected the year that 
overlapped with or approximated the period when the flux data were 
collected. Because the two land cover data products had slightly 
different land cover classifications, we merged and consolidated the 
land cover types into 16 groups (Table S6). 

2.4. Evaluation of footprint-to-target-area representativeness 

The footprint-to-target-area representativeness was evaluated at 
each site based on the comparisons of EVI and land-cover composition 
between the footprints and the series of target areas within 250 m, 500 
m, 1000 m, 1500 m, 2000 m, and 3000 m radial distances from the tower 
(Figures 1e–1f, S8–S9). 

For land-cover evaluations, we first identified the dominant land- 
cover type within the footprints, i.e., the land-cover type that had the 
highest footprint-weighted percentage based on all available monthly 
footprint climatologies (Pfootprint). Then, the corresponding percentage of 
this dominant land-cover type in the target areas (Ptarget) was calculated. 
The evaluation of representativeness was based on Pfootprint , Ptarget , and 
the Chi-square test between the footprint-weighted and target-area land- 
cover compositions. For simplicity, we propose a three-level index 
illustrating the site-level footprint-to-target-area representativeness as 
follows.  

• High representativeness: A site had ≥ 80% of a certain land-cover 
type both within the footprint and in a target area, and the land- 
cover compositions were not significantly different (p ≥ 0.05) be-
tween the footprint and a target area (see an example in 
Figure S8a–S8b).  

• Medium representativeness: A site had ≥ 50% of a certain land-cover 
type both within the footprint and in a target area, and the land- 
cover compositions were not significantly different (p ≥ 0.05) be-
tween the footprint and a target area, if not meeting the criteria of 
high representativeness (Figure S8c–S8d). 
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• Low representativeness: A site had < 50% of a certain dominant 
land-cover in the footprint or target area, or the land-cover compo-
sitions were significantly different (p < 0.05) between the footprint 
and a target area (Figure S8e–S8f). 

The criteria of 50% and 80% were chosen following Göckede et al. 
(2008). All statistics of Pfootprint , Ptarget, and Chi-square test are provided 
in the supplement (Dataset S4). In the preliminary tests, we found that 
34 sites had incorrect land-cover classifications from the land-cover 
products (e.g., NLCD) as compared with sites’ metadata (e.g., IGBP) 
(details in Text S3). Thus, the site-specific representativeness of 
land-cover composition was quantified at only 180 sites. 

For EVI evaluations, we first matched the available Landsat EVI 
images with the corresponding month’s footprint climatologies. At each 
available month, we calculated the target-area mean EVI (EVItarget), 
footprint-weighted EVI (EVIfootprint), and the sensor location bias (Δ) 
after Schmid and Lloyd (1999): 

EVIfootprint =
∑J

j=1

(
φj ×EVIj

)
(5)  

Δ =
EVIfootprint − EVItarget

EVItarget
(6)  

where j designates a pixel, J denotes the total number of pixels within 
the footprint climatology, φj and EVIj denote the footprint weight and 
EVI at pixel j, respectively. The sensor location bias, which was adopted 
in previous studies (Chen et al., 2011; Kim et al., 2006; Kim et al., 2018), 
represented the time-explicit footprint-to-target-area bias of EVI in each 
available month. Additionally, we quantified the site-level foot-
print-to-target-area representativeness using linear regression (model II) 
between all available footprint-weighted and target-area EVI at a site: 

EVItarget ∼ β0 + β1 × EVIfootprint (7)  

where β0 and β1 denote the intercept and slope of regression, respec-
tively. Similarly, we propose a three-level representativeness index 
based on the regression results as follows.  

• High representativeness: A site had linear regression with R2 ≥ 0.8, a 
slope of 1.0 ± 0.1, and an intercept of 0.0 ± 0.1 between the 
footprint-weighted and target-area EVI (see an example in 
Figures S9a–S9b).  

• Medium representativeness: A site had linear regression with R2 ≥

0.6 and p < 0.05, if not meeting the criteria of high representative-
ness (see an example in Figures S9c–S9d).  

• Low representativeness: A site had linear regression with R2 < 0.6 or 
p ≥ 0.05 (Figures S9e–S9f). 

Different thresholds (e.g., 5%, 10%) of sensor location bias have been 
used to justify the representativeness in the previous studies (Chen et al., 
2011; Kim et al., 2006; Wang et al., 2016). Here, we adopted a similar 
10% threshold for both the sensor location bias in each available month 
(i.e., |Δ| ≤ 10%) and site-level regression (i.e., -0.1 ≤ β0 ≤ 0.1, 0.9 ≤ β1 
≤ 1.1). All statistics of EVIfootprint , EVItarget , Δ, and regression are provided 
in the supplement (Datasets S5–S6). While all 214 sites were used in the 
pooled analyses, site-specific regressions were carried out for only 166 
sites with at least six matches between the monthly footprint climatol-
ogies and Landsat EVI. The median of available matches was 13 per site 
for the 166 sites. 

Unless specified, all data processing and statistical analyses were 
conducted using R (R Core Team, 2019). Specifically, the R-version of 
the FFP model was downloaded through http://footprint.kljun.net/. The 
h2o package was used to interface with H2O (https://www.h2o.ai/), an 
open-source cloud platform for distributed and scalable machine 
learning, to carry out the random forests model training and validation. 

The model II linear regression (lmodel2 package) was adopted for the 
comparison of EVI and evaluation of V_SIGMA prediction (Legendre, 
2014). The ggmap and rasterVis packages were used in generating the 
footprint maps (Kahle and Wickham, 2013; Lamigueiro and Hijmans, 
2018). 

3. Results 

3.1. Footprint climatology across AmeriFlux sites 

Across AmeriFlux sites, the spatial extent of flux footprint climatol-
ogies spanned several orders of magnitude (Figure 2, S10–S17). The 
footprint climatology extents, defined by the maximal distance from the 
tower to the 80% contour of the monthly footprint climatologies, ranged 
mostly from 100 m to 450 m (25th and 75th percentiles, Figure 3a). The 
footprint climatology areas, defined by the 80% contour of the monthly 
footprint climatologies, covered mostly around 13,000 to 260,000 m2 in 
area (25th and 75th percentiles, Figure 3b). In almost all studied site- 
years (> 95%), the nighttime footprint climatologies extended farther 
(~45% on average) and covered a larger area (~90% on average) than 
the daytime footprint climatologies. In rare cases, the daytime footprint 
climatologies may cover a slightly larger area than nighttime due to the 
distinct and variable wind directions between the daytime and night-
time (Text S4, Figure S18–S19). As the daytime and nighttime footprint 
climatologies largely overlapped in the areas with higher weights, 
around 93% of the site-years had O80_daynight larger than 0.8 (Figure 3d, 
Text S2). Additionally, footprint climatology, which aggregated foot-
prints from many time steps from different wind directions, smoothed 
out the variable and potentially extreme footprint conditions as seen by 
the half-hourly footprints (Figure S19). That also explained the rela-
tively high O80_daynight at most studied sites. While most sites had a 
relatively symmetric footprint climatology centered around the tower 
locations, some sites were asymmetric (e.g., US-NR1 (S80_night = 0.31), 
US-SRM (S80_night = 0.18) in Figure 2), as a consequence of the unimodal 
or bimodal prevailing wind directions. Using an arbitrary criterion of 
0.30 for the symmetry index, around 7% and 15% of the studied site- 
years showed relatively asymmetric footprint climatologies for day-
time and nighttime, respectively (Figure 3c). Noticeable monthly vari-
ability was found at ~32–44% of the studied site-years (i.e., 
O80_season_day, O80_season_night < 0.8, Figure 3d). Specifically, cropland, 
grassland, and wetland sites that experienced large changes of canopy 
heights throughout the growing season showed relatively pronounced 
monthly variations in footprint climatologies (e.g., US-Ne1, US-ARM, 
US-Ro5 in Figure 2). 

3.2. Evaluation of land-cover type 

While most AmeriFlux sites (83%–84%, i.e., daytime, nighttime) had 
relatively homogeneous land cover within the flux footprint climatol-
ogies, only 25%–39% of sites had similar land-cover compositions in the 
areas extending kilometers from the towers. Around 84% and 83% of 
AmeriFlux sites had one dominant land-cover type, as seen by the day-
time and nighttime footprint climatologies, respectively (i.e., the 
dominant land-cover type accounted for ≥ 80% footprint-weighted 
land-cover percentages (Figure 4)). On the other hand, only around 
64% of the sites had the same land-cover type also dominating (i.e., ≥
80%) the 250 m target areas. The percentages of sites decreased rapidly 
as the target area extended farther from the towers. With the 1000 m and 
3000 m target areas, only 39% and 25% of sites had the same dominant 
land-cover type as seen by the flux footprint climatologies. The median 
difference of the dominant land-cover percentages between the footprint 
and target area was ~6% and ~20% (Pfootprint > Ptarget) at the 1000 m and 
3000 m target areas, respectively. These results suggest that most 
AmeriFlux sites represent a specific land-cover type at each site, but they 
may not represent the dominant land-cover type at a larger spatial 
extent (e.g., 1000 m, 3000 m) around the tower. 
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For site-specific evaluations of land-cover composition, around 64% 
and 65% of sites showed high representativeness for the 250 m target 
area based on daytime and nighttime footprints (Figures 5a, S20a), and 
the percentage dropped to 21%–27% and 19%–28% as the target areas 
extended beyond 1000 m from the towers. The percentage of high- 
representativeness sites also varied substantially among IGBP and 
ecoregion groups (Figures 5, S20). Cropland sites, mostly located in 
highly managed agricultural landscapes, had 90%–50% of high- 
representativeness sites for 250–3000 m target areas (Figure 5e, 
S20e). On the other hand, only half of the wetland sites showed high 
representativeness even for a 250 m target area (Figures 5g, S20g, ex-
amples in Figures S17 (US-ORv, US-Srr, US-StJ)). The percentage of 
high-representativeness sites dropped to ~20% when extending the 
target areas beyond 500 m from the towers. For savanna and grassland 
sites, the percentage of high-representativeness sites was around 50%– 
60% within the 500 m target area. It gradually decreased to about 16%– 
33% as the target areas extended beyond 1000 m from the towers. 
Except for cropland, all ecosystem types had 4%–18% of low- 

representativeness sites as the target areas extended beyond 1000 m 
from the towers. Among the ecoregions, southwestern desert/semiarid 
and Mediterranean California regions had 40%–82% of high- 
representativeness sites across all target areas (Figures 5l, 5m, S20l, 
S20m). Eastern temperate and Boreal regions had only 2%–16% of high- 
representativeness sites when the target areas extended beyond 500 m 
around the tower. 

3.3. Evaluation of Enhanced Vegetation Index 

Systematic EVI biases (4%–20%) were found between the flux foot-
print climatologies and the target areas using a fixed area across all 
available site-years (Figure 6, Table 1). As indicated by the regression 
slopes, the systematic biases were ~4% and ~9% when using fixed 250 
m and 500 m target areas across all site-years (Table 1), respectively. 
Bias increased as the target area extended farther from the tower, 
reaching around 20% with a 3000 m target area. At all target areas, 
footprint-weighted EVI was systematically higher than target-area EVI, 

Fig. 2. Maps of monthly footprint climatologies at 16 AmeriFlux Core sites. In each panel, a true-color satellite image (accessed through Google Map) centered on a 
flux tower (yellow crosshairs) was overlaid with monthly footprint climatologies (i.e., 80% contour, red: daytime, blue: nighttime) from a selected year. White circles 
denote the distance from the tower. For better visualization, each map was truncated at different target areas. The site ID and selected year are indicated in the 
inserted label. Similar maps for other AmeriFlux sites are provided in the Supplement (Figures S10–S17). 
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suggesting that the flux footprints mostly covered areas with higher EVI 
than the surroundings. Only marginal differences (~1% in regression 
slopes) were found between results using daytime and nighttime 

footprint climatologies (insets in Figure 6, Table 1). In addition to the 
larger systematic biases, the comparisons of footprint-weighted and 
target-area EVI were more variable (i.e., they exhibited case-by-case, 
month-by-month variation) with the target areas extending farther 
from the towers. The R2 was 0.94 with a 250 m target area and dropped 
to 0.71 with a 3000 m target area. The results suggest that no single fixed 
target area can represent the flux footprint climatologies across sites 
without introducing biases. However, the 250 m target area was less 
biased in representing the footprint-weighted EVI when pooling all site- 
years altogether. 

The time-explicit sensor location biases (Δ) showed similar de-
pendency on the extents of the target areas. Around 73% and 75% of the 
monthly sensor location biases were within the ±10% threshold when 
using a 250 m target area for daytime and nighttime, respectively 
(Figure 7). The percentages within the ±10% threshold decreased as the 
target areas extended farther from the tower, reaching 42% and 43% for 
daytime and nighttime at a 3000 m target area. Separating by seasons, 
the summer months (June–August) had slightly higher percentages 
within the ±10% threshold, which were, respectively, 75% and 77% for 
daytime and nighttime at a 250 m target area and 45% and 46% at a 
3000 m target area (Figures S21e–S21f). In contrast, the winter months 
(December–February) had lower percentages of 70% and 68% for day-
time and nighttime at a 250 m target area and 33% and 34% at a 3000 m 
target area, respectively (Figures S21a–S21b). 

For site-specific regressions using EVI, 53% and 54% of sites showed 
high representativeness for a 250 m target area based on daytime and 
nighttime footprints (Figure 8a, S22a), and the percentage dropped to 
11%–16% and 11%–16% as the target areas extended beyond 1000 m 
from the towers. In all IGBP and ecoregion groups, the percentages of 
high-representativeness sites generally decreased as the target areas 
extended farther away from the tower. In addition, the percentage of 
high-representativeness sites varied substantially among the ecosystem 
types and ecoregions (Figures 8, S22). In sum, broadleaf and mixed 

Fig. 3. Kernel density functions of the footprint 
climatology across AmeriFlux sites. Figure (a) 
shows the distribution of the maximal distance 
(i.e., fetch (X80_day, X80_night)) from the tower 
location to the 80% footprint climatology con-
tour. Figure (b) shows the distribution of the 
area within the 80% footprint climatology 
contour (A80_day, A80_night). Figure (c) shows the 
distribution of the footprint symmetry index 
(S80_day, S80_night). Figure (d) shows the distri-
bution of the footprint overlap index for sea-
sonal (O80_season_day, O80_season_night, solid lines) 
and daytime-nighttime overlaps (O80_daynight, 
dashed line). When calculating these statistics, 
a data point represents an averaged value from 
all available monthly footprint climatologies in 
a studied site-year. The kernel density function 
was then obtained using data points from all 
available site-years. The black and grey lines 
show the distributions based on daytime and 
nighttime footprint climatologies, respectively. 
Both fetches and areas are logarithmic trans-
formed (x-axis) in Figures (a) and (b).   

Fig. 4. Cumulative distributions of the percentage of dominant land-cover type 
in the footprints and target areas across AmeriFlux sites. The red and blue lines 
are based on daytime and nighttime footprint climatologies, respectively. The 
orange dash-dotted lines show results from a series of target areas (i.e., 
250–3000 m radii centered around the tower location) as indicated by the color 
intensity (from dark to light, indicating an increasing distance from the tower). 

H. Chu et al.                                                                                                                                                                                                                                     



Agricultural and Forest Meteorology 301–302 (2021) 108350

9

forest sites had the highest percentages of high-representativeness sites 
across all target areas (Figures 8b, S22b), from ~77% with a 250 m 
target area to 27–32% when the target areas extended beyond 1000 m 
from the towers. Savanna and shrubland sites also had relatively high 
percentages of high- and medium-representativeness sites across all 
target areas. Cropland sites, while having ~50% of high- 
representativeness sites with a 250 m target area, decreased drasti-
cally as the target areas extended beyond hundreds of meters from the 
towers. Croplands, needleleaf forests, grasslands, and wetlands had 
around 20%–40% of low-representativeness sites as the target areas 
extended beyond 1000 m from the towers. Among the ecoregions, the 

great plains had relatively higher percentages of high- 
representativeness sites across all target areas (Figures 8k, S22k), from 
~53% with a 250 m target area to 21–29% when the target areas 
extended beyond hundreds of meters from the towers. Northwestern 
mountain/coast, eastern temperate, southwestern desert/semiarid, and 
Mediterranean California ecoregions had around 20%–67% of low- 
representativeness sites with a target area extending beyond 1000 m 
from the towers. 

Fig. 5. The footprint-to-target-area representativeness of the land-cover composition. Figure (a) shows the pooled results from all study sites. Figures (b)–(g) show 
results by ecosystems type, including the (b) needleleaf forest (i.e., IGBP: ENF), (c) mixed and broadleaf forest (MF, DBF, EBF), (d) savanna and shrubland (WSA, SAV, 
CSH, OSH), (e) grassland and barren land (GRA, BSV), (f) cropland (CRO), and (g) wetland (WET, SNO). Figures (h)–(m) show results by ecoregion, including the (h) 
boreal, (i) northwestern mountain and coast, (j) eastern temperate, (k) great plains, (l) southwestern desert and semiarid, and (m) Mediterranean California. The 
color intensity indicates the representativeness levels (from dark to light, indicating high to low representativeness). The results based on daytime footprints are 
shown here, while nighttime results are provided in the supplement (Figure S20). 

Fig. 6. Pooled results of the comparison of 
footprint-weighted and target-area EVI for all 
available site-years. Figure (a) and (b) show 
results using 250 m and 3000 m target areas, 
respectively. The main figure shows results 
based on the daytime footprints, while the inset 
is based on nighttime footprints. The red and 
blue straight lines show the linear regressions, 
while the black dashed line denotes the 1:1 
reference line. The contours enclose 50% 
(innermost), 60%, 70%, 80%, and 90% (outer-
most) of the data points. Statistics and results 
for other target areas are provided in Table 1.   
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3.4. Example Cases 

Three typical cases are discussed based on the representativeness for 
both the land-cover composition and EVI (Figures S23–S26). First, an 
example demonstrates that a site’s flux footprints are representative of 
most of the target areas. The US-MOz site—a deciduous forest located in 
a forest-dominated landscape—showed similar evaluation results for 
both the land-cover composition and EVI at most target areas 
(Figure S23). The site was classified as high representativeness for the 
EVI at all target areas and land-cover composition up to a 1500 m target 
area. At 2000 m and 3000 m target areas, the site was classified as 
medium representativeness for land-cover composition due to a slightly 
higher percentage of cropland coverage. 

Second, an example demonstrates that a site’s flux footprints repre-
sent only limited extents from the tower. The US-Vcp site—an evergreen 
forest located within a forest-shrub-grassland landscape—showed a 
gradually declining representativeness as the target area extended 
farther from the tower (Figure S24). The site was classified as high 
representativeness for both EVI and land-cover composition at a 250 m 
target area. Extending farther from the tower, the target areas covered 
more shrublands and grasslands. Consequently, the site was classified as 
low and medium representativeness for EVI and land-cover composition 
when the target area extended beyond a 1000 m radius around the 

tower. Both US-MOz and US-Vcp cases show similar evaluation results 
between the land-cover composition and EVI. 

Third, contrasting representativeness between land-cover composi-
tion and EVI were found in several cropland sites, attributed to the va-
riety of crop types that were not differentiated by the land-cover 
products. For example, the US-Ro6 site—a cropland located in an agri-
cultural landscape dominated with corn/soybean rotation—was planted 
with wheat, clover, and corn in 2017–2018 (Figure S25). The site was 
planted with spring wheat in April 2017. Kura clover was planted after 
the harvest of wheat in August. Corn was planted into the clover in the 
spring of 2018. While the site was classified as high/medium repre-
sentativeness for the land-cover composition across all target areas, the 
site was classified as low representativeness for the EVI in all except the 
250 m target area, as a consequence of the distinct crop types and 
phenology between the footprints and nearby fields. On the other hand, 
the US-Bi2 site—a corn cropland located in a corn-dominant agricultural 
landscape—showed medium to high representativeness for both land- 
cover composition and EVI at all target areas (Figure S26). 

4. Discussion 

4.1. Implication of footprint-to-target-area representativeness 

We advise the modeling and synthesis communities to be "footprint- 
aware" when using the large-scale flux datasets (e.g., FLUXNET2015, 
AmeriFlux BASE data products), especially in research such as point- 
scale simulations and spatially-explicit land surface models, remote- 
sensing-based models, and machine-learning upscaling studies. Our 
study highlights the importance of considering spatiotemporal dynamics 
of flux footprints, particularly within heterogeneous landscapes, when 
using flux data in model-data benchmarking. Across AmeriFlux sites, we 
found several orders of magnitude difference in the extents and areas of 
the footprint climatologies. As most flux tower sites were located in 
more-or-less heterogeneous landscapes (e.g., land cover, EVI) (Griebel 
et al., 2020; Reuss-Schmidt et al., 2019; Stoy et al., 2013), no single 
fixed-extent target area can represent the land surface characteristics as 
seen by the flux footprints universally across sites without introducing 
biases. These biases’ sign and magnitude were site-specific and varied 
depending on the extents of target areas and the land surface charac-
teristics. In general, the 250 m target area tended to be less biased in 
representing the land surface characteristics as covered by the flux 
footprint climatologies. Yet, around 36% and 47% of sites still differed 
in the land-cover composition and EVI between the footprints and a 250 

Table 1 
Pooled results of the comparison of footprint-weighted and target-area EVI for 
all available site-months (N = 3307). Linear regression model: EVItarget ~ β0 +

β1 × EVIfootprint. RMSE: root mean square error. MAE: Mean absolute error. 
Numbers in square brackets indicate 95% confidence intervals. See Figure 6 for 
the results from the 250 m and 3000 m target areas.  

Target area Intercept (β0) Slope (β1) R2 RMSE MAE 

Daytime footprint 
250 m 0.02 [0.01, 0.02] 0.96 [0.95, 0.97] 0.94 0.05 0.03 
500 m 0.03 [0.03, 0.04] 0.91 [0.90, 0.92] 0.88 0.07 0.05 
1000 m 0.04 [0.04, 0.05] 0.87 [0.86, 0.89] 0.79 0.09 0.06 
1500 m 0.05 [0.04, 0.05] 0.85 [0.83, 0.86] 0.74 0.09 0.07 
2000 m 0.05 [0.05, 0.06] 0.82 [0.81, 0.84] 0.72 0.09 0.07 
3000 m 0.06 [0.05, 0.06] 0.80 [0.78, 0.81] 0.71 0.09 0.07 
Nighttime footprint 
250 m 0.02 [0.01, 0.02] 0.96 [0.96, 0.97] 0.94 0.05 0.03 
500 m 0.03 [0.03, 0.03] 0.92 [0.91, 0.93] 0.88 0.07 0.04 
1000 m 0.04 [0.04, 0.05] 0.88 [0.87, 0.89] 0.79 0.09 0.06 
1500 m 0.05 [0.04, 0.05] 0.85 [0.84, 0.86] 0.75 0.09 0.07 
2000 m 0.05 [0.04, 0.06] 0.83 [0.81, 0.84] 0.73 0.09 0.07 
3000 m 0.05 [0.05, 0.06] 0.80 [0.79, 0.82] 0.71 0.09 0.07  

Fig. 7. Kernel density functions of the sensor location bias (Δ) of EVI for all available site-months (N = 3307) from (a) daytime and (b) nighttime footprints. The 
orange lines show results from a series of target areas (i.e., 250–3000 m radii around the tower location) as indicated by the color intensity (from dark to light, 
indicating an increasing distance from the tower). A similar figure broken down by season is provided in Figure S21. 
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m target area, respectively. With limited footprint information across 
sites, previous studies often assumed flux data collected at the tower 
locations adequately represented the conditions at a certain set of fixed 
areas surrounding the towers (e.g., 1 × 1 or 3 × 3 km2) (Tramontana 
et al., 2016; Verma et al., 2015; Xiao et al., 2014), or from a specific 
plant functional type (Chen et al., 2018; Williams et al., 2009). Such 
assumptions may not hold for many sites and would need to be revisited. 
We discuss potential approaches to being "footprint aware" in the 
following sections. 

We advocate that the representativeness indices can be used to 
identify and select sites suitable for specific applications considering the 
spatial scales of interest and relevant land surface characteristics—a 
subsetting approach. While simple and straightforward, the subsetting 
approach utilizes only a portion of available site-data. Also, the criteria 
of the representativeness levels may not be suitable for certain research 
and applications. Alternatively, the representativeness indices can be 
used to provide guidance of data usage for sites with different repre-
sentativeness levels—a hybrid approach. For sites classified as "high- 
representativeness" for a given target area, the flux data may be used 
without additional detailed footprint analyses (after considering the 
limitations discussed below). Sites classified as "medium-representa-
tiveness" for a given target area were often located in a relatively het-
erogeneous or patchy landscape, and hence a prognostic method, such as 
pairing flux data with land surface characteristics at carefully selected 
pixels (i.e., a spatially-explicit method; DuBois et al., 2018; Fisher et al., 
2020; Verma et al., 2015; Zhang et al., 2017), might be sufficient. Our 
monthly footprint climatologies (Figures 2, S10–S17, Datasets S2–S3) 
could be used to define the areas. Alternatively, a more sophisticated 
method that incorporates the subgrid variability in model simulations 
would be necessary to adequately link the observations with model 
outputs (Baldocchi et al., 2005; Bonan et al., 2012). Sites classified as 
"low-representativeness" for a given target area were typically located in 
a heterogeneous or patchy landscape, and additionally, were often 

characterized by time-varying footprint climatologies and/or distinct 
vegetation phenology within the landscape (e.g., different crop types in 
adjacent fields, a mix of different plant functional types, vegetated and 
non-vegetated cover). We advise that site-specific footprint analysis is 
needed to use and interpret flux data at these sites. The footprint quality 
flags recently adopted by AmeriFlux and Integrated Carbon Observation 
System (ICOS: https://www.icos-cp.eu/) or the time-explicit footprint 
weight maps provided by National Ecological Observatory Network 
(NEON: https://www.neonscience.org/) can be used to identify and 
filter out periods when flux footprints covered the less desired source 
areas. Several site-level studies also demonstrated the potential benefits 
of utilizing detailed footprint information in decomposing flux data 
signals in a patchy and heterogeneous site (Helbig et al., 2016; Tuovi-
nen et al., 2019; Wang et al., 2006). Alternatively, a 
spatiotemporally-explicit method that incorporates both the temporal 
dynamics of footprints and the spatial variations of land surface char-
acteristics is highly recommended (Chen et al., 2010; Fu et al., 2014; 
Ran et al., 2016; Xu et al., 2017a; Xu et al., 2017b). 

Several cross-site footprint analyses were carried out at the network 
scales previously (Chen et al., 2011; Chen et al., 2012; Göckede et al., 
2008; Rebmann et al., 2005; Wang et al., 2016). While incorporating 
certain aspects or metrics adopted in those previous studies, our 
approach is tailored to the modeling and synthesis data users who intend 
to use flux data for many sites. We demonstrate our approach’s feasi-
bility to be implemented "extensively" across a large number of sites and 
propose a simple representativeness index that could be used for site 
selection and data use guidance. Such an "extensive" approach can help 
subset data that better fulfill the space-time assumptions underlying a 
particular application. To address the space-time mismatches between 
flux observation and model simulation in more detail and utilize (rather 
than subset) the full set of available sites, we recommend a hierarchy of 
multiple approaches where feasible (Durden et al., 2020). For example, 
Griebel et al. (2020) proposed a practical approach to account for 

Fig. 8. The footprint-to-target-area representativeness of the EVI. Figure (a) shows the pooled results from all study sites. Figures (b)–(g) show results by ecosystems 
type, including the (b) needleleaf forest (i.e., IGBP: ENF), (c) mixed and broadleaf forest (MF, DBF, EBF), (d) savanna and shrubland (WSA, SAV, CSH, OSH), (e) 
grassland and barren land (GRA, BSV), (f) cropland (CRO), and (g) wetland (WET, SNO). Figures (h)–(m) show results by ecoregion, including the (h) boreal, (i) 
northwestern mountain and coast, (j) eastern temperate, (k) great plains, (l) southwestern desert and semiarid, and (m) Mediterranean California. The color intensity 
indicates the representativeness levels (from dark to light, indicating high to low representativeness). The results based on daytime footprints are shown here, while 
the nighttime results are provided in the supplement (Figure S22). 
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contributions of spatial sampling variations due to varying wind di-
rections over heterogeneous surfaces for annual budgets of carbon 
fluxes. While the approach does not calculate footprints explicitly, it had 
relatively few implementation requirements and was successfully 
applied to 154 sites in the FLUXNET2015 dataset. Alternatively, a few 
studies proposed relatively "intensive" approaches to fully incorporate 
the footprint dynamics in footprint-to-target-area upscaling frameworks 
(Fu et al., 2014; Metzger et al., 2013; Ran et al., 2016; Reuss-Schmidt 
et al., 2019; Xu et al., 2017b). These approaches show merit for 
providing spatiotemporally-explicit flux data products that could be 
benchmarked against model predictions at designated grid cells. One 
such development even shows promise to close the surface energy 
imbalance frequently observed at flux towers (Metzger, 2018; Xu et al., 
2020), which to date cripples data synthesis and model-data fusion with 
another pervasive bias (Cui and Chui, 2019; Mauder et al., 2020; Stoy 
et al., 2013). However, the data requirements for implementing these 
approaches across sites are comparatively high. These include the 
availability of fine-resolution (spatially and temporally) land surface 
characteristics and/or reprocessing the high-frequency eddy-covariance 
data. Our representativeness results could serve as a guide to identify 
and prioritize the sites where the intensive approach is deemed neces-
sary (Durden et al., 2020). 

4.2. Limitations and uncertainties 

The FFP model—an analytical parameterization of a Lagrangian 
stochastic dispersion model—is robust in performance (Heidbach et al., 
2017; Nicolini et al., 2017) and flexible enough to be applied across 
many sites over long periods. However, the FFP model, as well as most 
footprint models, has its assumptions and limitations. These include the 
assumption of steady-state conditions, a horizontally homogeneous 
turbulence field, no vertical advection, and the applicability of the 
Monin-Obukhov similarity theory (Rannik et al., 2012; Kljun et al., 
2015). While we recognize these assumptions and carefully filter out less 
ideal sites and/or data periods (Table S2), it is challenging to system-
atically evaluate these assumptions (especially the last two) across 
AmeriFlux sites. We briefly discuss the potential uncertainties and im-
plications here. With flux data being carefully 
quality-controlled/filtered by the site investigators and a large number 
of (half-)hourly footprints aggregated for monthly footprint climatol-
ogies, we argue that the influences of non-steady states should be mar-
ginal on the final results. The unmet assumption of homogeneity at 
certain sites requires caution when interpreting the evaluation results. 
Similar to previous footprint-based evaluation studies (Chen et al., 2012; 
Göckede et al., 2008), our evaluation of footprint representativeness is 
inherently influenced by landscape heterogeneity because it violates the 
homogeneity assumption of most footprint models. The sites classified as 
"low-representativeness" might be prone to additional uncertainties 
resulting from an inhomogeneous turbulence field (Heidbach et al., 
2017). Besides, ~14% of the studies sites were located in an undulated 
terrain, a strong slope (>10%), or a hilltop, and ~28% of the studied 
sites had the eddy-covariance measurement height within the roughness 
sublayer, assuming it extends to 1.5 times the aerodynamic canopy 
height (Chu et al., 2018). The possible occurrence of advection and 
violation of the Monin-Obukhov similarity theory may complicate the 
footprint calculations. We suggest using caution when interpreting re-
sults from these sites (listed in Dataset S4–S5). Further site-specific 
footprint analyses are highly recommended for these cases. It should 
be noted that the footprint models typically assume flux sources/sinks 
are located dominantly in the plant canopy. Such an assumption implies 
that our footprint evaluations are less applicable to CH4 and nighttime 
CO2 fluxes, especially at tall forest sites. 

Additional uncertainties in footprint calculations could result from 
the selection of footprint models or uncertainties in the input variables/ 
parameters. First, we recognized that there are other types of footprint 
models such as the analytical models (e.g., Hsieh et al., 2000; Kormann 

and Meixner, 2001; Schmid, 2002; Schuepp et al., 1990) and Lagrangian 
stochastic models (e.g., Leclerc and Thurtell, 1990; Thomson, 1987). 
Our preliminary tests found that the extents and areas of footprint cli-
matologies could vary substantially using a different footprint model (e. 
g., Kormann and Meixner, 2001 (KM01 model)) (Text S2, Figure S3). 
Yet, as the areas with higher footprint weights were largely overlapped 
between the FFP and KM01 models, we found only marginal differences 
in the results of footprint-to-target-area representativeness, 
footprint-weighted land-cover percentage and EVI (Text S2, 
Figures S4–S7). Footprint model benchmarking and validation is an 
active research area beyond the scope of this study, and we refer 
interested readers to the relevant studies (Arriga et al., 2017; Dumortier 
et al., 2019; Heidbach et al., 2017; Kumari et al., 2020; Nicolini et al., 
2017). We also advocate that future research should aim to better 
quantify and constrain the uncertainty of footprint models, as ulti-
mately, all footprint models are “models” and have their limitations and 
uncertainties. Second, we parameterized the roughness lengths and 
zero-plane displacement heights following Chu et al. (2018). This 
allowed us to track canopy dynamics (e.g., seasonal dynamics for 
croplands, Figures S25–S26) and evaluate many sites where required 
metadata (e.g., canopy structure) are not always available. Yet, the 
approach has its assumptions and limitations (Chu et al., 2018). Po-
tential uncertainties or biases could result from the violation of the 
Monin-Obukhov similarity theory, an aerodynamically inhomogeneous 
turbulence field, or any unaccounted changes in canopy structures. 
Again, caution should be exercised when interpreting results at sites 
with complex terrain and relatively low eddy-covariance measurement 
heights because those sites likely violate the assumptions mentioned 
above. Third, the use of predicted V_SIGMA could introduce additional 
uncertainties in the footprint calculations, especially in the lateral 
dimension of the footprint area (Detto et al., 2008). Yet, we argue that 
the influences should be marginal on the final evaluation results, as our 
analyses were conducted using monthly footprint climatologies, aggre-
gating footprints from many time steps and different wind directions. 
The aggregation process tends to cancel out random differences in the 
lateral dimensions of the half-hourly footprints. To facilitate an in-depth 
footprint analysis at a finer temporal scale (e.g., daily, hourly), we 
advocate that V_SIGMA should be calculated and provided when 
possible. 

Our evaluations were constrained by the availability of both flux 
tower data and gridded land surface characteristics, which may not be 
comprehensive in all possible situations. We suggest that future research 
should further investigate the following aspects. First, the footprint 
climatology, which aggregates footprints from many time steps and 
provides a panoramic view of footprints over a certain period, smooths 
out the variable and extreme footprint conditions as seen by the half- 
hourly footprints (Text S4). We suggest future research can explore 
the use of half-hourly footprints directly if there is a need to resolve the 
fine-scale footprint variability (e.g., CH4 flux; Helbig et al., 2016; Tuo-
vinen et al., 2019) or if the data-model integration can be carried out at a 
finer temporal scale (e.g., Xu et al., 2017b). Second, both land-cover 
type and EVI are important land surface characteristics often used in 
modeling and upscaling tower-based CO2 fluxes. However, the relation 
between the land surface characteristics and fluxes may be nonlinear 
and ecosystem-specific. We suggest that future research could explore 
other proxies of fluxes (e.g., machine-learning predictions, model out-
puts from mechanistic models) such as those used in the evaluation of 
the network-to-region representativeness (Carvalhais et al., 2010; 
Papale et al., 2015; Sulkava et al., 2011). Third, our preliminary tests 
found that ~82 sites had mismatches between the site’s IGBP classifi-
cations and the dominant land-cover obtained from the land-cover data 
products (e.g., NLCD, Land Cover Canada). Around 59% of the mis-
matches could be attributed to differences in classifications, especially in 
patchy and sparsely-vegetated landscapes (e.g., savanna, 
shrub-grassland, forest-wetland mosaics), disturbed and restored sites 
(e.g., logged and replanted forests), and wetlands (see Text S3). 
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However, we found that around 41% of the mismatches were incorrect 
land-cover classifications. This discrepancy highlights the need for bet-
ter assessments and improvements to the available land-cover data 
products (Jin et al., 2019; Wickham et al., 2017; Wickham et al., 2013). 
Fourth, the selection of land surface characteristics largely depends on 
the research questions and data availability (Chen et al., 2012; Kim 
et al., 2006; Reuss-Schmidt et al., 2019), generally focusing on the 
vegetation and landscape features that constrain the target fluxes. When 
available, we suggest considering other fine-resolution (i.e., tens of 
meters or finer) land surface characteristics in the evaluations. Potential 
land surface characteristics may include, but are not limited to, land 
surface temperature (e.g., ECOSTRESS) (Fisher et al., 2020), topo-
graphic characteristic, canopy structure, and soils (e.g., LiDAR, digital 
elevation model) (Chasmer et al., 2011; Giannico et al., 2018; Jucker 
et al., 2018), vegetation composition (Allred et al., 2020; Davidson et al., 
2017), fine-scale disturbance (Xin et al., 2013), vegetation indices (e.g., 
leaf area index, land surface water index, near-infrared reflectance of 
vegetation, solar-induced fluorescence) (Griebel et al., 2016; Magney 
et al., 2019; Pasqualotto et al., 2019; Taddeo et al., 2019), repeated 
digital camera imagery (Richardson et al., 2018), and other spectral 
retrievals (Serbin et al., 2015; Singh et al., 2015). Potentially, a holistic 
approach utilizing multivariate metrics could be adopted similar to the 
previous works evaluating network representativeness (Chu et al., 2017; 
Hargrove and Hoffman, 2004; Villarreal et al., 2018). Fifth, the footprint 
aggregation’s temporal interval could be tailored to the retrieval fre-
quency of specific land surface characteristics. For example, with the 
new terrestrial-monitoring satellites (e.g., ECOSTRESS, Sentinel-2) 
(Belgiu and Csillik, 2018; Fisher et al., 2020) and other airborne plat-
forms (e.g., unmanned aerial vehicle, airborne visible-infrared imaging 
spectrometer) becoming available (Chapman et al., 2019; Klosterman 
et al., 2018; Wang et al., 2019), evaluations could be carried out at a 
finer temporal scale (e.g., days or weeks). Similarly, proximal optical 
monitoring at the scale of the flux tower footprint can help understand 
how best to match remote-sensing and flux data in time and space 
(Gamon, 2015). Sixth, our evaluation focused on the site-level repre-
sentativeness and chose 1–6 years of available data at all studied sites. 
With some AmeriFlux sites being operated for 15–30 years and experi-
encing changes in vegetation compositions and structures, future eval-
uations could be carried out separately for individual periods or years 
(Kim et al., 2018). Similar considerations also apply to ecosystems that 
experience rapid changes in vegetation compositions and structures (e. 
g., disturbed, intensively managed sites). Last, many remote-sensing 
datasets are aggregated in time and/or space (Robinson et al., 2017; 
Xin et al., 2013) or merged from multiple data sources (Allen et al., 
2007; Hilker et al., 2009). This adds extra complexity in matching the 
spatial and temporal scales between flux and remote-sensing data. While 
beyond the immediate scope of this study, we recommend that future 
efforts consider the spatiotemporal scales and relate data aggregation of 
the flux data and the remotely sensed datasets. 

5. Conclusions 

Eddy-covariance flux data are spatiotemporally dynamic. Large- 
scale flux datasets, such as FLUXNET2015 and AmeriFlux BASE, need 
to be used and interpreted with "footprint awareness", especially in 
research and applications intended to benchmark against models and/or 
data products with explicit spatial information. This includes, but is not 
limited to, point-scale simulations and spatially-explicit land surface 
models, remote-sensing-based models, and machine-learning upscaling 
studies. The extent and direction of the source areas contributing to the 
measured fluxes at flux tower sites (i.e., flux footprint) vary largely 
across sites and through time depending on wind direction, measure-
ment heights, underlying surface characteristics, and turbulent states of 
the atmosphere. As most flux tower sites are located in heterogeneous 
landscapes, the spatial variations of land surface characteristics and the 
temporal dynamics of flux footprints jointly lead to the so-called 

representativeness issue, i.e., to what spatial extent do the flux mea-
surements taken at individual tower locations reflect the flux conditions 
at the corresponding model or data-product grid cells. The commonly 
adopted model-data integration approach that assumes that the flux 
footprint represents a fixed target area near the tower universally across 
sites would certainly introduce biases (e.g., 4%–20% in EVI, 6%–20% in 
the dominant land-cover percentage). These biases’ sign and magnitude 
were site-specific and varied depending on the target area extent and the 
land surface characteristics. We suggest that the (half-)hourly footprint 
information or the required variables for footprint calculations should 
be generated routinely and made available to the modeling and syn-
thesis user communities when possible. In the meantime, our proposed 
representativeness indices could be used as a guide to identifying sites 
suitable for specific applications considering the spatial scales of interest 
and relevant land surface characteristics. Additionally, the representa-
tiveness indices provide general guidance for data use for sites with 
different representativeness levels, recognizing there are uncertainties 
in these as well. We advocate that future research should explore a hi-
erarchy of multiple approaches to fully address the representativeness 
issue. 
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