	Readu PUBLICATIONS
1	
2	Global Biogeochemical Cycles
3	Supporting Information for
4 5	Partitioning N_2O Emissions within the US Corn Belt using an Inverse Modeling Approach
6 7 8	Z. Chen ¹ , T. J. Griffis ¹ , D. B. Millet ¹ , J. Wood ¹ , X. Lee ² , J. M. Baker ^{1,3} , K. Xiao ¹ , P. A. Turner ¹ , M. Chen ¹ , J. Zobitz ⁴ , and K. C. Wells ¹
9 10	¹ Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA
11 12	² School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
13 14 15	³ United States Department of Agriculture, Agricultural Research Service, Saint Paul, MN, USA
15 16 17	⁴ Department of Mathematics, Augsburg College, Minneapolis, MN, USA
17 18	
19 20	
21 22	
23 24	
25 26	Contents of this file
27 28	Text S1
29 29	
30 31	Introduction
32 33	This supporting information provides additional details related to the Bayesian inversion.
34 35	
36 37	
38 39	
40	

- 41 Text S1. Solutions of Bayesian Inversion
- 42 43 $y = K\Gamma + \varepsilon$ (S1) 44 Where y is the observed minus background mixing ratios, the columns of K correspond to 45 the simulated mixing ratios for each of the source types being optimized, and Γ consists 46 of the *a posteriori* scale factors for the 7 source types. Γ_1 is the scaling factor for *dirA*; 47 Γ_2 is the scaling factor for *indA*; 48 49 Γ_3 is the scaling factor for *waste*; 50 Γ_4 is the scaling factor for *industry*; 51 Γ_5 is the scaling factor for *energy*; Γ_6 is the scaling factor for *natsoil*; 52 53 Γ_{7} is the scaling factor for *BB*. 54 55 Since the Bayesian inversion is conducted each month for each inversion, there are 56 $24 \times 30 = 720$ hourly observed and simulated mixing ratios. The dimension of the matrix K 57 is 720×7. The cost function J(T) used to determine Γ is Equation 2. The maximum a 58 *posteriori* (MAP) solution of Γ is to minimize the cost function $J(\Gamma)$, S_{ε} is the observational error covariance matrix, the matrix equals $\sigma_0 \cdot I$, where I is the identity 59 matrix. We are assuming the observational error (σ_0) is constructed and calculated via 60

61 quadrative, $\sigma_o = \sqrt{\sigma_m^2 + \sigma_p^2 + \sigma_m^2 + \sigma_b^2}$, where σ_m is the measurement error, σ_p is 62 the error from particles, σ_{mh} is the error from simulated mixing height, σ_b is the error 63 from background mixing ratios, in a unit of ppb. For simplicity, these individual errors 64 are independent.

65

 S_a is the *a priori* error covariance matrix, it's a diagonal matrix. Along the diagonal, the percentage uncertainty is given corresponding to *the a priori* uncertainty of each source type.