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ABSTRACT

Net CO, exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years
of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-
response function method. The analyses produced net CO, exchange data and new ecosystem-scale ecophysiological parameter
estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem
respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the
data from grain crops obtained with the same method demonstrated that CO, exchange rates and ecophysiological parameters of
legumes were lower than those of maize (Zeamays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume
crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO, m~2 yr~! to sources of -2100 g CO, m~2yr 1,
with an average of -330 g CO, m 2 yr!, indicating overall moderate CO, -source activity related to a shorter period of photosynthetic
uptake and metabolic costs of N, fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO,, with
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Fig. 1. Flux-tower sites in legume crops and Omernik Level 3 ecoregions of North America.

Legume crops (mostly soybean, alfalfa, and peanut [Arachis
hypogaea L.]) occupy >20% of the cultivated land of the United
States, playing a significant role in shaping the C balance of
North America. A number of site-specific studies analyzing
CO,—exchange processes and their C budget implications for
legume crops of the region have been published (Baldocchi et al.,
1981a, 1981b, 1983; Hollinger et al., 2005; Baker and Griffis,
2005; Verma et al., 2005; Bernacchi et al., 2005, 2006; Fischer et
al.,2007; Glenn et al., 2010; Pingintha et al.,, 2010; Hernandez-
Ramirez et al., 2011; Gebremedhin et al,, 2012). In these studies,
including legume crops with different physiology and agronomy,
annuals and perennials, the researchers used various methods
based on either direct integration of net CO, exchange data
or various models for C budget components. Nevertheless, the
productivity, respiration, and ecophysiological parameters of
legume crops derived from flux-tower measurements have not

yet been subjected to comparative analysis and synthesis. We
present a unified approach based on partitioning of the flux-
tower data into photosynthesis and respiration components

by using a standardized method based on the nonrectangular
hyperbolic model (Thornley and Johnson, 2000) to obtain new
measurement-based estimates of CO, exchange of leguminous
crops and facilitate comparability of the results from different
sites and crops. The same technique was recently applied to
cereals of midcontinent North America as the major agricultural
crops (Gilmanov et al., 2013), and the present study expands the
analysis to legumes, as the second significant crop type of the
region. Quantification of the CO, exchange and ecophysiological
parameters presented here will provide agriculturalists with
valuable information to optimize the economic and sustainability
aspects of the production of various leguminous crops.
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MATERIALS AND METHODS

We have compiled a data set of year-round net CO, exchange
measurements at flux-tower stations in legume fields coveringa
geographic range from Alberta, Canada, to Georgia and from
Oklahoma to Pennsylvania to quantitatively compare gross
photosynthesis, ecosystem respiration, and ecophysiological
parameters of legume crops in North America (Fig, 1). For
comparison, we have also included measurements from three
existing European flux towers on legume crops. The data set
includes flux towers in all major legume crops: 20 site-yr of
soybean; 5 site-yr of alfalfa; 2 site-yr of pea (Pisum sativum L.); 1
site-yr of faba bean (Vicia faba L.); and 1 site-yr of peanut (Table 1).

Flux towers in the data set covered a wide range of climatic
conditions, with mean annual temperatures from 2.9 to
17.6°C, annual precipitation totals from 336 to 1380 mm,
growing seasons (5°C) from 189 to 356 d, and the sum of daily
temperatures >5°C from 1545 to 4806 degree days (Table 1). All
sites in the data set had eddy-covariance instrumentation, with
measurements following the Ameriflux/CarboEurope/Fluxnet
protocol (Meyers and Hollinger, 2004; Aubinet et al., 2012),
except for the Trace Gas Manitoba site, where the flux gradient
micrometeorological technique was used (Glenn et al., 2010).

Partitioning of Net Carbon Dioxide Flux
Data into Photosynthesis and Respiration

Using ecophysiological sign convention, where CO,, flux
from the atmosphere to the ecosystem is positive, gross
photosynthesis, P, and total ecosystem respiration, R, are
considered as process rates, combined in the conservation
equation with signs corresponding to their contribution to
the respective processes. In non-forest terrestrial ecosystems
with insignificant canopy CO, storage (Loescher et al., 2006),
the net CO, flux, F (mg CO, m~2571), provided by flux-
tower measurements represents the difference between gross
photosynthesis and ecosystem respiration:

F=P R, [1]

In general, factors controlling photosynthesis and respiration
at the crop level are not the same (although they overlap), and
the patterns of their response to a given factor are not identical
(Thornley and Johnson, 2000). Therefore, decomposition
of the F data into photosynthesis and respiration (Eq. [1]) is
recognized as an essential part of flux-tower data processing.
While in the eatlier period of flux data analysis partitioning
was usually based on estimation of daytime respiration
from nighttime fluxes, more recently derivation of daytime
respiration from daytime measurements has become the
dominant approach (Gilmanov et al., 2003, 2013; Reichstein et
al., 2005; Lasslop et al., 2010). Analysis of tower CO, exchange
data from a wide range of grassland and crop ecosystems
demonstrated that the modified nonrectangular hyperbolic
equation provides a robust and flexible tool for partitioning
of the eddy-covariance net CO, exchange data into gross
photosynthesis and ecosystem respiration components (Stoy et
al., 2006). In temperate and humid climates, the partitioning
equation in the form (Gilmanov et al., 2007)

F(Q.T)=

1

—J(@Q+A,.) —40A,_6Q

-, exp(kTTs)

may be used, where Q is photosynthetically active radiation, T is
the temperature, o is the initial slope (apparent quantum yield),

A .. is the plateau (photosynthetic capacity) of the light response,
0 is the convexity parameter (Thornley and Johnson, 2000), and 1,
and ky are the coefficients of the exponential temperature response
[r, = R.(0)]. Under conditions of pronounced water stress,
partitioning based on Eq. [2] may lead to overestimation of the
daytime respiration and gross photosynthesis because reduction
of daytime flux under water stress may not only occur due to

the increase in temperature but may also reflect the decrease in
photosynthesis due to stomatal regulation (Gilmanov et al., 2010;
Pingintha et al., 2010). In such cases, a modification of Eq. [2] is
used (Gilmanov et al., 2013):

F(Q.T,VPD)=
¢(VPD)
o [0Q +A,.. -
—J(0Q+A,.) —40A,.6Q ]
—lexp ( kG T, )
1, VPD<VPD,
¢(VPD)= (4]

2
exp —[VPDVPD“] , VPD>VPD,

Ovrp

where T_is soil temperature, and the normalized vapor pressure
deficit (VPD) response function ¢(VPD) depends on two
parameters: the critical VPD value, VPD _, below which water
deficit doesn’t affect photosynthesis (p = 1 for VPD < VPD )
and the curvature parameter, oy pp, (1 < 0yppy < 30), with lower
values describing a strong water-stress effect and higher values
indicating a weak effect (Gilmanov et al., 2013). Although,
generally speaking, the values of the VPD_ parameter may
vary among crops and ecosystems, following El-Sharkawy et

al. (1984), Lasslop ct al. (2010), and Pingintha et al. (2010), we
accepted a critical value VPD_ = 1 kPa and considered a one-
parameter VPD response function in the form

1, VPD<1

2

¢(VPD)=

, VPD>1

[VPDI
CXP —

Oypp

Estimation of the Parameters
The parameter estimation and gap-filling methods used in
this study followed procedures in the parallel study for the
grain crops (Gilmanov et al., 2013), where they were described

in detail. The parameters o, A 0, Fos kT’ and OvpD (when

max’
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Fig. 2. Light—soil temperature—vapor pressure deficit (VPD) response functions for legume crops at several sites during the period of active

photosynthesis: (A) faba bean, Manitoba, Canada; (B) soybean, Minnesota; (C) alfalfa, Michigan; (D) soybean, lowa; (E) soybean, lllinois-1; (F) soybean,
Nebraska; (G) alfalfa, Pennsylvania; and (H) soybean, Illinois-2. On each panel, the left graph shows a simple light-response plot and a fitted light curve,
the light—soil temperature—VPD response is shown on the right (light—soil temperature response for G).

necessary) of the functions Eq. [2-5] were numerically
estimated for every day of the growing season using available
Q, T, VPD, and F data. Using the optimization tools of

the Mathematica system (Wolfram Research), for every
day’s {Q(i), T,(i), VPD(i), F(i), i = 1,2, ..., n} dataset of n

< 48 records with a 30-min time step, we identified best-fit
parameter values {o,, A .0, 0y pp, 1o, k1) of Eq. [2-5].
The series of graphs in Fig. 2 (specifications in Table 2) show
examples of the response functions for several sites for the
period of active photosynthesis. The data in Tables 3 and 4
illustrate parameter estimates using the models of Eq. [2] and
[3-5], respectively.

The rate of ecosystem respiration, I, (mg CO, m™2s71), was
described by an exponential function of soil temperature:

rc (Ts ) = r.0 CXP(kTTs ) [6]

where, during the growing season, parameters 'y = r_(0)
and k were estimated by fitting Eq. [2] or [3] to 30-min
{F.Q,T,VPD} data for individual measurement days, while
outside the period of photosynthetic activity, Iy and Ky were
estimated by fitting Eq. [6] to pooled 30-min {F, T} data for
moving (typically, 9-d-wide) windows centered at the day of
measurements.
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Vapor Pressure Deficit Limitation
of Photosynthesis

The significance of the VPD as a factor controlling the net CO,
flux may be determined by consideration of the whole array of
estimated curvature parameter oy, pp, values for a given site-year.
The 0y, pp values typically lie in the interval from 2 to 30 kPa, the
lower range characterizing a strong VPD effect (rapid decrease of
F with VPD increasing to values >>1 kPa), while higher values of
oy pp describe functions ((VPD) that decrease only gradually
with increasing aerial drought. A detailed characteristic of the
VPD limitation of crop photosynthesis may be provided by
agraph of the cumulative distribution of the number of days
with curvature coefficient oy < o (Fig. 3). Nevertheless, in
comparing ecosystems, a simpler parameter may be used, e.g,, the
number of days for which oy, ppy < 4 kPa and the maximum vapor
pressure deficit VPD > 1kPa (Dyppy).

Gap Filling and Calculation of Annual
Totals of Production and Respiration

Estimates of half-hourly rates of gross photosynthesis, P,
and ecosystem respiration, R , for days with missing flux data
were obtained by use of the assimilation and respiration terms
of Eq. [2] or [3], respectively, with parameter estimates for
the missing calendar days obtained by smooth interpolation

t),0(t),

across the data set of available parameters {u(tj), Al ), 0(t;

(gCO, m~2 [light period] ™), and nighttime ecosystem respiration,
R ght(t) (gCO, m~2 [light period])~1), for calendar days t = 1,

2, ..., 365 were obtained by numerical integration of half-hourly
rates over corresponding periods of the day. The total 24-h
ecosystem respiration R (t) (g CO, m~2d~1) and the net 24-h
ecosystem CO, exchange, F(t), were calculated as

R. (t> =Ry (H)+ Roighe (t) 7]

F(t)=P,(t)—R.(t) (8]

Finally, the annual totals of gross primary production (GPP)
and ecosystem respiration (RE) were calculated as annual sums:
365
GPP=1 P (t) 9]
t=1
and
365

RE=) R (t) [10]

while the annual net ecosystem production (NEP) was obtained as

ro(t), kT(tj), OVPD(tj)}' Daily totals of gross photosynthesis, NEP=GPP—RE [11]
P g(é (gCO, m~2 d"1), daytime ecosystem respiration, R q ay(t)
Table 2. Specifications for graphs in Fig. 2.
Symbol Site Crop Year Day of the year

A Trace Gas Manitoba, MB, Canada faba bean 2007 201

B Rosemount conventional, Minnesota soybean 2006 184

C Kellogg Biological Station, Michigan alfalfa 2006 182

D Brooks Field 10, lowa soybean 2008 216

E Fermi agricultural site, lllinois soybean 2007 182

F Mead rainfed, Nebraska soybean 2002 223

G Haller, PA alfalfa 2003 179

H Bondville, IL soybean 2002 215

Table 3. Numerical values and the goodness-of-fit characteristics of the parameters apparent quantum yield (o), photosynthetic capacity (A

max)s Convex-

ity of the light response (0 ratio), respiration rate at zero temperature (ry), and the exponential temperature coefficient (k;) in Eq. [2] for Day of the Year

179 at the Haller alfalfa site, 2003.

Parameter [ Aax 0 ratio ro ket
mg CO, pmol™! mg CO, m2 57! mg CO, m2 57! oc-!
Value 0.00134 1.541 2567 x 1078 0.0964 0.0688
SE 0.00038 0.142 0.0938 0.0707 0.0301
t value 3.554 10.85 2.736 x 1077 1.364 2.286
b value 0.0017 1.6 x 10°10 1.0 0.186 0.032

Table 4. Numerical values and the goodness-of-fit characteristics of the parameters apparent quantum yield (), photosynthetic capacity (A

maX), convex-

ity of the light response (0 ratio), respiration rate at zero temperature (r;), the exponential temperature coefficient (k;), and the curvature parameter of
the vapor pressure deficit response (oypp) of Eq. [3—4] for Day of the Year 223 at the Mead rainfed soybean site, 2002.

Parameter a Amax ro ks OvpD
mg CO, pmol™! mg CO, m2 57! mg CO, m2s~! oc-! KPa
Value 0.00192 1.748 0.108 0.0404 3.246
SE 0.00013 0.097 0.027 0.0098 0.114
t value 14.90 18.09 3.98 4.2 28.47
p value 0 0 3.69 x 1078 2.68 x 107 1.74 x 107 0
550 Agronomy Journal <+ Volume 106, Issue 2 <+ 2014
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Fig. 3. Cumulative distribution functions of the daily vapor pressure deficit (VPD) response curvature parameter values, oypp, for: (A) a faba bean crop at
the Trace Gas Manitoba site, 2007; and (B) a soybean crop at the Bondville site, 2002. The dashed arrows illustrate determination of the Dyppy parameter
as the number of days when the curvature parameter of the VPD-dependent factor (Eq. [5]) was less than or equal to the critical value o\pp = 4 kPa.

We found that for comparative purposes, it was useful to
introduce additional parameters of average daytime respiration
rate, Iy ay(t), and average nighttime respiration rate, I, ght(t)’
calculated as

_1000R,, (t) 2]
rday (t) - T, (t)—’rl (t)
1000R_, (t
e (1) e Y -

86,4007, (t)—, (t)]

where ,(t) and 7, (t) are the moments of sunrise and sunset for
the tth calendar day respectively (measured in seconds to obtain
I andr , ohe in milligrams of CO, per square meter per second
if F¥ day is in grams of CO, per square meter per light period and
R

night is in grams of CO, per square meter per dark period).

Photosynthetic Light-Use Efficiency

Light-use efficiency characteristics are often used as important
tools of comparative ecological analysis. From a number of
coeficients suggested for this purpose, we used the coefficient
of gross photosynthetic light-use efficiency, LUE, defined as
aratio of daily gross photosynthesis P to daily incoming of
photosynthetically active radiation Q (Cooper, 1970; Gilmanov
etal., 2005):

LUE= "% [14]
Q

While the coefficient of apparent quantum yield (initial slope
of the light response), o, characterizes the potential physiological
light-use efficiency, LUE is a measure of ecologically realized
photosynthetic productivity, making comparison of the ovand
LUE values an important tool of comparative ecological analysis.

RESULTS AND DISCUSSION

The modified nonrectangular hyperbolic model with VPD
limitation in the form of Eq. [3-5] proved to be an adequate tool
for describing tower-based net CO, exchange measurements in
legume crops and partitioning them into photosynthesis and
respiration components. Figure 2 illustrates application of the

model: Fig. 2A-2F and 2H show models with VPD limitation
(Eq. [3-5]), while Fig. 2G illustrates the model driven only by
the light and soil temperature factors (Eq. [2]). The left graph

on each panel shows a simple light-response scatterplot fitted

by nonrectangular hyperbolac F(Q) with daytime respiration
constant during the day; the surface on the right panel shows
the (Q,T) response described by Eq. [3-5] with the average
daily VPD value; the blue dots at the right show the original
measured F values and the red dots show actual model predicted
F(Q,T,VPD) accounting for VPD variability.

To illustrate parameter estimation procedures, Table 3
shows estimated values and the goodness-of-fit characteristics
for the model of Eq. [2] fitted for Day 179 of the 2003 season
at the Haller alfalfa site (Fig. 2G) when no substantial VPD
limitation was observed (mean daily VPD = 1.0 kPa, VPD =
2.1 kPa). The model shows a significant temperature-response
coefficient ky = 0.069 °C1, with the value close to van’t HofF’s
Qo = 2.0. For this case, the close-to-zero estimate of the
convexity parameter 6 should also be noted, indicating that
the light response for this day may apparently be described by a
rectangular hyperbola, characterized by 6 = 0.

The data in Table 4 illustrate the parameters of Eq. [3-5]
fitted for Day 223 of 2002 at the Mead soybean site. As can be
seen on the light-response diagram of Fig, 2F, this day at this site
was marked by a substantial decrease in net CO, uptake (VPD
reached 3.4 kPa in the afternoon hours), resulting in a hysteresis-
like loop on the (Q,F) diagram. The model reflects this fact by
generating highly significant (high t values) estimates of all the
parameters, including the parameters of temperature response, I,
and kp, and VPD limitation, oy, pp, (Table 4).

Ecosystem-scale ecophysiological parameters generated by
the partitioning method described above exhibited pronounced
seasonal dynamics, which reflects physiological and phenological
changes of the biota in the field, as well as changes in biomass
and leaf area characteristics. To facilitate comparison of
parameters among sites and years, we found it useful to calculate
weekly means and the errors of the means for each site-year.

The data in Fig, 4 provide an example of seasonal patterns
of parameters at the weekly time scale, demonstrated by the
soybean field at the Fermi agricultural site in 2007.

Maximum daily and maximum mean weekly values of the

ecophysiological parameters of legume crops for the site-years of
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2.5

Fig. 4. Seasonal dynamics of major ecophysiological parameters of the soybean crops at the Fermi agricultural site, 2007: (A) apparent quantum yield,

a; (B) photosynthetic capacity, A . ;

(C) gross photosynthetic light-use efficiency, LUE; and (D) daytime ecosystem respiration rate, Tday Dots show

weekly means of the parameters and the error bars show standard errors of the mean.

this study are summarized in Table 5. These data illustrate the
magnitudes and variability of the parameters among leguminous
crops as well as for different years at the same crop site. They may
also be compared with corresponding parameters for grain crops.
The maximum mean weekly apparent quantum yield for legumes,
47 to 48 mmol mol™! achieved for the alfalfa crop at the Kellogg
Biological Station in 2006 and Mandan in 2010, is less than the
value of 50.30 mmol mol~! estimated for a maize crop at the
Bondville site in 2003 but higher than 37.23 mmol mol™! recorded
for the hard red spring wheat field at the Trace Gas Manitoba site
in 2008 (Gilmanov et al., 2013). Our estimate of the maximum
daily photosynthetic capacity, A | =2.3mg CO, m~2s7L for
alfalfa at the Haller site compares well with the estimate of A =
2.4mgCO, m~2 57! for alfalfa reported by Assengand Hsiao
(2000) using the BREB/CO, gradient technique. The maximum
mean weekly Amax,wk =2.35mgCO, m2s71 for legumes
recorded at the soybean field of the maize- soybean rotation at
Bondpville in 2004 is smaller than 3.63 mg CO, m~ 2571 estimated
for the irrigated maize crop of the same rotation at the Mead site in
2003 but higher than 2.02 mg CO, m~2 57! found for the spring
wheat crop from the Trace Gas Manitoba site in 2008.

The maximum mean weekly respiration rate of 0.48 mg
CoO, m 251 registered in the pea field of the Oensingen site

in 2010 is lower than 0.63 mg CO,, m~2 57! measured in the
maize field at the Fermi agricultural site in 2006 but higher
than the 0.27 mg CO, m~2 s7! estimated for the winter wheat
crop of the Ponca City site in 1999 (Gilmanov et al., 2013).
For the peanut crop at the Vienna site with LAI
-2 maxawk = 28-4 mmol mol~ 1
1.88 mg CO, m 2571 and M daymaxawk = =0. 23 mg
-1 ThlS compares well with the values O pewk =
Ak = 275 mg CO, m™~ s, and
da ,max,wk ~ =0. 23 mg CO m”
al. (2010) for a much more productlve peanut crop in Georgia
with much higher LAI (7.6 m? m™2).

The maximum daily values and maximum mean weekly

maX
3.8 m? m~2, we estimated

Amax wk =

CO, m 2
43.8 mmol mol !
-1 obtained by Pingintha et

parameter values presented in Table 5 show the ranges of
variability of the ecophysiological parameters of legume

crops, demonstrating coefficients of variation from 18 to 28%.
Comparison of the ecophysiological parameters of legumes

with the corresponding parameters estimated for grain crops in
North America, summarized by Gilmanov et al. (2013) using the
same methods, demonstrate (Table 6) that both the daily and
the weekly maximums of the apparent quantum yield (v, ) of
legumes are not significantly different from those of maize but
are significantly higher than for wheat fields. The photosynthetic
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Table 6. Mean ecophysiological parameters of the maximum daily (index max) and weekly (index max,wk) apparent quantum yield (o), photosynthetic
capacity (A), daytime respiration rate (ry, ), and light use efficiency (LUE) for legume, maize, and wheat crops estimated from flux-tower measurements

(maize and wheat data according to Gilmanov et al., 2013).

Crop Parameter Qmax 0('max,wk Amax Amax,wk rday,max rday,max,wk LUEmax I‘UEmax,wk
mmol mol~! ——mg CO, m2sh — mg CO, m2s”! ——mmol mol™!
Legumes avg. 523 379 2.06 1.6l 0.41 0.29 39.8 25.3
n 26 29 26 29 26 29 26 29
Maize avg. 494 ns 39.8 ns 2.93%%k 2.62%%F 0.51* 0.37%* 44.1 ns 34.3%%k
n 17 17 17 17 17 17 17 17
Wheat avg. 35.9%%* 29.7%* 1.7% |.34% 0.31%* 0.23* 29.7%* 20.8 ns
n 9 9 9 9 9 9 9 9

* For maize, hypothesis that maize mean > legume mean is significant at p <0.05; for wheat, hypothesis that wheat mean < legume mean is significant at p <0.05; ns, not significant.

** For maize, hypothesis that maize mean > legume mean is significant at p <0.01; for wheat, hypothesis that wheat mean < legume mean is significant at p <0.01.

** For maize, hypothesis that maize mean > legume mean is significant at p <0.001; for wheat, hypothesis that wheat mean < legume mean is significant at p <0.001.

capacity (A, ) of the legume crops at both daily and weekly
scales is significantly lower than that of maize and significantly
higher than for wheat crops. The metabolic parameter of daytime
respiration rate (I ay) of legumes is significantly different from
both maize and wheat, being lower than for maize but higher
than for wheat. Maximum daily values of LUE of legumes are
not significantly different from those of maize (which is in
agreement with the apparent quantum yield, o nax’ data in Table
6), but mean weekly LUE data for legumes are significantly
lower than in maize. Compared with wheat, the maximum

daily LUE values for legumes are significantly higher, but

this is not true for the weekly values. Thus, high physiological
potentials of the legumes are not always realized in long-term
(weekly) performance, resultingin LUE_ 1 values for legumes
significantly lower than for maize and not significantly higher
than for wheat (Table 6).

For comparison of the extent of VPD limitation between sites
and years for those sites for which the model of Eq. [3-5] with
VPD dependence of the Co, exchange was applied, we used the
Dy pp parameter calculated from the cumulative distribution
of the curvature parameter, oy, pp, of Eq. [5] as the total number
of days for which VPD > 1kPaand oypp, < 4kPa (Fig. 3).
We found that the number of days when an atmospheric water
deficit was affecting the productivity of the legume crops varied
from 29 to 73 d (Table 5), with a trend of increasing from north
to south, most closely correlating with the sum of temperatures
>5°C [correlation coefficient r(Tsum5, Dy,ppy) = 0.37].

Source-Sink Activity of the Legume Crop Fields

Time series of daily values of photosynthesis P_(t ( ), respiration

R, (1), net daily CO, flux F(t), and its cumulatlve sum, the
cumulatlve net ecosystem production, iNEP(t), provide a
comprehensive description of the dynamics of the CO, exchange
in the legume crop fields. Examples in Fig. 5 show that the
legume crops exhibited a variety of patterns of the integrated
net ecosystem production curves iNEP(t), from predominantly
accumulative, demonstrated by alfalfa crops (Fig. SC and 5G)
through nearly equilibrium, recorded in the faba bean crop
cultivated for forage and in highly productive soybean crops (Fig.
SA, 5E, and 5H), to the negative net CO, balance observed on
other soybean fields (Fig. 5B, 5D, and SF).

The annual integrals of gross primary production, total
ecosystem respiration, and the net ecosystem production
calculated according to Eq. [3-5], with P (t) and R (t) for
missing days  gap-filled using mterpolated parameters, are

presented in Table 7 along with the maximum annual values

of daily P R ,and F

maX €,max max’
photosynthetlc assimilation of the legume crops, P ,in

Table 7 was 71.1 g CO, m™2 d~! recorded for the sgynl;z};n crop
at the Bondville site in 2004 which is lower but comparable to
the maximum of 82 g CO, m~2 d~! obtained from the Thomas
and Hill (1949) estimate of P gmax =56 gdry matter m~2 d~!
for an experimental alfalfa crop (assuming 40% C content of
the dry matter). ThisP, . =71.1gCO, m ~2d7! for legumes
is lower than 110 and 79 g CO, m =2 d-1 established at the
maize and wheat flux tower sites, respectively, of midcontinent
North America (Gilmanov et al,, 2013). At the same time, the
maximum daily respiration R e max = =626 g CO, m2d! for
legumes was higher than 32 g CO, m ~24-1 estabhshed for
wheat fields and comparable to 64 gCO, m =2 d-! for maize
fields (Gilmanov et al., 2013).
Our estimates of the P ¢.max F(c e and F - inlegume
fields are consistent with data of other researchers who used
different methods. Suyker et al. (2005) estimated P =66

g,max

andR, . =44gCO,m =2 d-! for the soybean rotatlon of the
1rr1gated Mead site in 2002 which compares with our estimates
of 59 and 41 g CO, m~2d~! for the same site-year. Peng and
Gitelson (2012) estimated the error of the daily soybean P

values for the same site as SE = +:8.3 g CO, m2dL Applying

. The maximum daily rate of

this error value to statistically compare both daily photosynthesis
and respiration maxima, the difference between the estimates

of Suyker et al. (2005) and our estimates lies within the £2 SE
range and therefore may be considered not significant. According
to Verma ct al. (2005) and Peng and Gitelson (2012) for the
rainfed soybean crop at the Mead site in 2002, P max =398
CO, m2d!and Foa=23.8gCO, m=2 d-!, which are also
rather close to our estimates for the same site-year of P
55.7gCO, m2d!and F o = 26.28CO, m2dL

In terms of the annual totals, which reflect not only the

g,max

intensive physiological parameters of species and cultivars but
also such extensive parameters as length of the period of active
photosynthesis during the year, the situation is as follows: the
mean annual GPP (Eq. [ ) from flux-tower sites in maize

fields was 4480 g CO, m™~ 2yr~L, in wheat fields it was 2393 g
CO, m2yr! (Gilmanov etal, 2013), and in legume fields it was
3056¢gCO, m~2yr~! (this study). The corresponding values for
ecosystem respiration RE (Eq. [10]) are 3269 for maize, 2276 for
wheat, and 3159 g CO, m~2yr~! for legume crops. As aresult, the
mean annual net ecosystem production NEP (Eq. [11]) amounts
to 1211 gCO, m~2 yr~! for maize, 116 gCO, m~2yr~! for wheat
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Fig. 5. Seasonal dynamics of gross photosynthesis P,, ecosystem respiration R, net ecosystem CO, exchange F, and accumulated net ecosystem
production iNEP in selected legume fields: (A) faba bean, Trace Gas Manitoba, 2007; (B) soybean, Rosemount conventional, 2006; (C) alfalfa, Kellogg
Biological Station, 2006; (D) soybean, Brooks Field 10, 2008; (E) soybean, Fermi agricultural site, 2007; (F) soybean, Mead rainfed, 2002; (G) alfalfa,
Haller, 2003; and (H) soybean, Bondville, 2002.
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(Gilmanov etal., 2013), and ~103 g CO, m~2 yr™! for legume
crops. Within the legume group, the data show that perennial
legumes (alfalfa) were on average a strong sink, with mean NEP
of 976 g CO, m—2 yr_1 (range 546-1175g Co, m™2 yr‘l),
while annual legumes demonstrated a moderate to strong source
activity, with mean NEP of -327 g Co, m—2 yr_1 (range -2066
t0 763 g CO, m~2 yr™!), although it should be borne in mind
that ecosystem respiration for annual legumes definitely includes
decomposition of the net production (e.g., root residue) of the
previous crop (Gebremedhin et al., 2012).

Our estimates of the GPP and RE for the rainfed (2964 and
3483 g CO, m~2 yr~1) and irrigated rotation (3165 and 3277 g
CO, m~2 yr~!) soybean crops at the Mead station in 2002 (Table
7) may be compared with tower-based estimates by Suyker et
al. (2005) and model-based data by Grant et al. (2007). Suyker
ctal. (2005) obtained GPP and RE values 0of 3109 and 3175 g
CO, m~2yr~!and 3542 and 3670 g CO, m~2 yr~! for the
rainfed and irrigated fields, respectively, showing differences
~10% in magnitude from our estimates, which are mostly due to
differences in the estimation of daytime ecosystem respiration.
Nevertheless, those differences are much smaller than the
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legume fields, at the qualitative level, these numbers compare
well with the shift of ~~800 g CO, m~2 yr~! of the legume
points to the left relative to the cereal points, as shown in Fig,
6, where the mean NEP for maizeis 1211 g Co, m™2 yr‘l,
116 g CO, m~2 yr~! for wheat, and ~135 g CO, m 2 yr~! for
legumes. In contrast to annual legumes, perennial legume
crops (alfalfa) demonstrated pronounced CO, sink activity,
with corresponding points on the GPP-RE diagram located to
the right of the main diagonal. Nevertheless, on average, they
also are shifted to the left compared with maize crops (Fig. 6),
apparently reflecting the metabolic costs of N, fixation.

CONCLUSIONS

1. Ecosystem-scale physiological parameters of apparent quan-
tum yield, photosynthetic capacity, ecosystem respiration,
and photosynthetic light-use efficiency of the legume crops
of North America estimated from flux-tower measurements
using light-response function methods have intermediate
values between the higher values for maize and lower values
for wheat crops.

2. During the growing period, the parameters of quantum
yield, photosynthetic capacity, respiration rate, and light-use
efficiency exhibited pronounced patterns of seasonal varia-
tion, reflecting combined changes in intensive (physiologi-
cal and phenological state) and extensive (biomass and leaf
area) characteristics of the plant canopy, which have strong
implications for the “light-use efficiency-based” models of
ecosystem CO, exchange.

3. In periods of strong limitation of plant productivity due to
water deficit, it is necessary to modify the classical nonrect-
angular hyperbolic equation of the canopy CO, exchange by
introduction of VPD-dependent control of photosynthetic
uptake. The curvature coeflicient of the VPD response,
oypp (Eq. [5]), and characteristics derived from it, like the
number of days when oypy < 4and VPD,__ > 1.0 kPa,
may be used to quantify the level of VPD limitation of CO,
exchange for comparative purposes.

4. Perennial legume crops (alfalfa) perform as strong sinks
for atmospheric CO,, with mean NEP of 980 (maximum
1200) g Co, m—2 yr‘l, but remain less productive than
maize crops, with mean NEP of 1200 (maximum 2100) g
CO, m™2 yr‘l, reduction in the alfalfa NEP being compa-
rable to the costs of symbiotic N, fixation estimated at 220
t0 440 g CO, m2 yr_l.

5. Annual RE controls a larger fraction of the GPP for annual
legume crops than for cereals (Fig. 6), also reflecting gener-
ally lower NEP values and the potential for CO,—source
activity, particularly for soybean and pea crops. This conclu-
sion has four far-reaching implications. First, metabolic ex-
penditures for N, fixation combined with the comparatively
short growing season(s) may be among the factors contribut-
ing to lower annual NEP. Second, any management activity
that affects C exchange during the period when legumes are
not present can greatly change the annual C balance. These
activities range from prolonging the fallow period (increas-
ing the likelihood of an annual source) to multicropping
systems ( increasing the sink capacity), or other management
activities, e.g., increased irrigation or fertilizer use. Third, any
change in the abiotic drivers that affect the process rates (c.g.,

temperature, water availability, or light) will in turn affect
the source—sink strength of these legume crops. A change in
these drivers can be in the magnitude, quality, and periodic-
ity, as well as the timing of seasonal changes, e.g., phenology,
early-onset spring, or early-onset summer drought. Lastly, in-
teractions among natural drivers, management choices, and
agronomic economies are likely to change local to regional C
balances of future legume cropping—but also bound within
the ecophysiological parameters presented here.
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