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ABSTRACT
Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years 
of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-
response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter 
estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem 
respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the 
data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of 
legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume 
crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, 
with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic 
uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with 
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Legume crops (mostly soybean, alfalfa, and peanut [Arachis 
hypogaea L.]) occupy >20% of the cultivated land of the United 
States, playing a significant role in shaping the C balance of 
North America. A number of site-specific studies analyzing 
CO2–exchange processes and their C budget implications for 
legume crops of the region have been published (Baldocchi et al., 
1981a, 1981b, 1983; Hollinger et al., 2005; Baker and Griffis, 
2005; Verma et al., 2005; Bernacchi et al., 2005, 2006; Fischer et 
al., 2007; Glenn et al., 2010; Pingintha et al., 2010; Hernandez-
Ramirez et al., 2011; Gebremedhin et al., 2012). In these studies, 
including legume crops with different physiology and agronomy, 
annuals and perennials, the researchers used various methods 
based on either direct integration of net CO2 exchange data 
or various models for C budget components. Nevertheless, the 
productivity, respiration, and ecophysiological parameters of 
legume crops derived from flux-tower measurements have not 

yet been subjected to comparative analysis and synthesis. We 
present a unified approach based on partitioning of the flux-
tower data into photosynthesis and respiration components 
by using a standardized method based on the nonrectangular 
hyperbolic model (Thornley and Johnson, 2000) to obtain new 
measurement-based estimates of CO2 exchange of leguminous 
crops and facilitate comparability of the results from different 
sites and crops. The same technique was recently applied to 
cereals of midcontinent North America as the major agricultural 
crops (Gilmanov et al., 2013), and the present study expands the 
analysis to legumes, as the second significant crop type of the 
region. Quantification of the CO2 exchange and ecophysiological 
parameters presented here will provide agriculturalists with 
valuable information to optimize the economic and sustainability 
aspects of the production of various leguminous crops.

Fig. 1. Flux-tower sites in legume crops and Omernik Level 3 ecoregions of North America.
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MATERIALS AND METHODS
We have compiled a data set of year-round net CO2 exchange 

measurements at flux-tower stations in legume fields covering a 
geographic range from Alberta, Canada, to Georgia and from 
Oklahoma to Pennsylvania to quantitatively compare gross 
photosynthesis, ecosystem respiration, and ecophysiological 
parameters of legume crops in North America (Fig. 1). For 
comparison, we have also included measurements from three 
existing European flux towers on legume crops. The data set 
includes flux towers in all major legume crops: 20 site-yr of 
soybean; 5 site-yr of alfalfa; 2 site-yr of pea (Pisum sativum L.); 1 
site-yr of faba bean (Vicia faba L.); and 1 site-yr of peanut (Table 1).

Flux towers in the data set covered a wide range of climatic 
conditions, with mean annual temperatures from 2.9 to 
17.6°C, annual precipitation totals from 336 to 1380 mm, 
growing seasons (5°C) from 189 to 356 d, and the sum of daily 
temperatures >5°C from 1545 to 4806 degree days (Table 1). All 
sites in the data set had eddy-covariance instrumentation, with 
measurements following the Ameriflux/CarboEurope/Fluxnet 
protocol (Meyers and Hollinger, 2004; Aubinet et al., 2012), 
except for the Trace Gas Manitoba site, where the flux gradient 
micrometeorological technique was used (Glenn et al., 2010).

Partitioning of Net Carbon Dioxide Flux 
Data into Photosynthesis and Respiration

Using ecophysiological sign convention, where CO2 flux 
from the atmosphere to the ecosystem is positive, gross 
photosynthesis, Pg, and total ecosystem respiration, Re, are 
considered as process rates, combined in the conservation 
equation with signs corresponding to their contribution to 
the respective processes. In non-forest terrestrial ecosystems 
with insignificant canopy CO2 storage (Loescher et al., 2006), 
the net CO2 flux, F (mg CO2 m–2 s–1), provided by flux-
tower measurements represents the difference between gross 
photosynthesis and ecosystem respiration:

g eF P R= -  [1]

In general, factors controlling photosynthesis and respiration 
at the crop level are not the same (although they overlap), and 
the patterns of their response to a given factor are not identical 
(Thornley and Johnson, 2000). Therefore, decomposition 
of the F data into photosynthesis and respiration (Eq. [1]) is 
recognized as an essential part of flux-tower data processing. 
While in the earlier period of flux data analysis partitioning 
was usually based on estimation of daytime respiration 
from nighttime fluxes, more recently derivation of daytime 
respiration from daytime measurements has become the 
dominant approach (Gilmanov et al., 2003, 2013; Reichstein et 
al., 2005; Lasslop et al., 2010). Analysis of tower CO2 exchange 
data from a wide range of grassland and crop ecosystems 
demonstrated that the modified nonrectangular hyperbolic 
equation provides a robust and flexible tool for partitioning 
of the eddy-covariance net CO2 exchange data into gross 
photosynthesis and ecosystem respiration components (Stoy et 
al., 2006). In temperate and humid climates, the partitioning 
equation in the form (Gilmanov et al., 2007)

( )

( )

( )

max

2
max max

0 s

,
1

2

4

exp T

F Q T

Q A

Q A A Q

r k T

=

éa +ëq
ù

- a + - a q ú
úû

-

 [2]

may be used, where Q is photosynthetically active radiation, T is 
the temperature, a is the initial slope (apparent quantum yield), 
Amax is the plateau (photosynthetic capacity) of the light response, 
q is the convexity parameter (Thornley and Johnson, 2000), and r0 
and kT are the coefficients of the exponential temperature response 
[r0 = Re(0)]. Under conditions of pronounced water stress, 
partitioning based on Eq. [2] may lead to overestimation of the 
daytime respiration and gross photosynthesis because reduction 
of daytime flux under water stress may not only occur due to 
the increase in temperature but may also reflect the decrease in 
photosynthesis due to stomatal regulation (Gilmanov et al., 2010; 
Pingintha et al., 2010). In such cases, a modification of Eq. [2] is 
used (Gilmanov et al., 2013):

( )
( )

( )

( )

s

max

2
max max

0 s

, , VPD

VPD
2

4

exp T

F Q T

Q A

Q A A Q

r k T

=

j éa +ëq
ù

- a + - a q ú
úû

-

 [3]

( )
cr

2

cr
cr

VPD

1, VPD VPD

VPD VPD VPD
exp , VPD VPD

ì £ïïïï é ùï æ öj =í -ê ú÷çï ÷- >çê ú÷ï ç ÷çï sè øê úï ë ûïî

 [4]

where Ts is soil temperature, and the normalized vapor pressure 
deficit (VPD) response function j(VPD) depends on two 
parameters: the critical VPD value, VPDcr, below which water 
deficit doesn’t affect photosynthesis (j  = 1 for VPD £ VPDcr) 
and the curvature parameter, sVPD (1 £ sVPD £ 30), with lower 
values describing a strong water-stress effect and higher values 
indicating a weak effect (Gilmanov et al., 2013). Although, 
generally speaking, the values of the VPDcr parameter may 
vary among crops and ecosystems, following El-Sharkawy et 
al. (1984), Lasslop et al. (2010), and Pingintha et al. (2010), we 
accepted a critical value VPDcr = 1 kPa and considered a one-
parameter VPD response function in the form

( ) 2

VPD

1, VPD 1

VPD VPD 1
exp , VPD 1

ì £ïïïï é ùï æ öj =í -ê ú÷çï ÷- >çê ú÷ï ç ÷çï sè øê úï ë ûïî

 [5]

Estimation of the Parameters
The parameter estimation and gap-filling methods used in 

this study followed procedures in the parallel study for the 
grain crops (Gilmanov et al., 2013), where they were described 
in detail. The parameters a , Amax, q , r0, kT,  and sVPD (when 
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necessary) of the functions Eq. [2–5] were numerically 
estimated for every day of the growing season using available 
Q, Ts, VPD, and F data. Using the optimization tools of 
the Mathematica system (Wolfram Research), for every 
day’s {Q(i), Ts(i), VPD(i), F(i), i = 1, 2, …, n} data set of n 
£ 48 records with a 30-min time step, we identified best-fit 
parameter values {a , Amax, q, sVPD, r0, kT} of Eq. [2–5]. 
The series of graphs in Fig. 2 (specifications in Table 2) show 
examples of the response functions for several sites for the 
period of active photosynthesis. The data in Tables 3 and 4 
illustrate parameter estimates using the models of Eq. [2] and 
[3–5], respectively.

The rate of ecosystem respiration, re (mg CO2 m–2 s–1), was 
described by an exponential function of soil temperature:

( ) ( )e s 0 sexp Tr T r k T=  [6]

where, during the growing season, parameters r0 = re(0) 
and kT were estimated by fitting Eq. [2] or [3] to 30-min 
{F,Q,Ts,VPD} data for individual measurement days, while 
outside the period of photosynthetic activity, r0 and kT were 
estimated by fitting Eq. [6] to pooled 30-min {F,Ts} data for 
moving (typically, 9-d-wide) windows centered at the day of 
measurements.

Fig. 2. Light–soil temperature–vapor pressure deficit (VPD) response functions for legume crops at several sites during the period of active 
photosynthesis: (A) faba bean, Manitoba, Canada; (B) soybean, Minnesota; (C) alfalfa, Michigan; (D) soybean, Iowa; (E) soybean, Illinois-1; (F) soybean, 
Nebraska; (G) alfalfa, Pennsylvania; and (H) soybean, Illinois-2. On each panel, the left graph shows a simple light-response plot and a fitted light curve, 
the light–soil temperature–VPD response is shown on the right (light–soil temperature response for G).
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Vapor Pressure Deficit Limitation 
of Photosynthesis

The significance of the VPD as a factor controlling the net CO2 
flux may be determined by consideration of the whole array of 
estimated curvature parameter sVPD values for a given site-year. 
The sVPD values typically lie in the interval from 2 to 30 kPa, the 
lower range characterizing a strong VPD effect (rapid decrease of 
F with VPD increasing to values >>1 kPa), while higher values of 
sVPD describe functions j(VPD) that decrease only gradually 
with increasing aerial drought. A detailed characteristic of the 
VPD limitation of crop photosynthesis may be provided by 
a graph of the cumulative distribution of the number of days 
with curvature coefficient sVPD £ s (Fig. 3). Nevertheless, in 
comparing ecosystems, a simpler parameter may be used, e.g., the 
number of days for which sVPD £ 4 kPa and the maximum vapor 
pressure deficit VPDmax ³ 1 kPa (DVPD).

Gap Filling and Calculation of Annual 
Totals of Production and Respiration

Estimates of half-hourly rates of gross photosynthesis, Pg, 
and ecosystem respiration, Re, for days with missing flux data 
were obtained by use of the assimilation and respiration terms 
of Eq. [2] or [3], respectively, with parameter estimates for 
the missing calendar days obtained by smooth interpolation 
across the data set of available parameters {a(tj), Amax(tj), q(tj), 
r0(tj), kT(tj), sVPD(tj)}. Daily totals of gross photosynthesis, 
Pg(t) (g CO2 m–2 d–1), daytime ecosystem respiration, Rday(t) 

(g CO2 m–2 [light period]–1), and nighttime ecosystem respiration, 
Rnight(t) (g CO2 m–2 [light period])–1), for calendar days t = 1, 
2, …, 365 were obtained by numerical integration of half-hourly 
rates over corresponding periods of the day. The total 24-h 
ecosystem respiration Re(t) (g CO2 m–2 d–1) and the net 24-h 
ecosystem CO2 exchange, F(t), were calculated as

( ) ( ) ( )e day nightR t R t R t= +  [7]

( ) ( ) ( )g eF t P t R t= -  [8]

Finally, the annual totals of gross primary production (GPP) 
and ecosystem respiration (RE) were calculated as annual sums:

( )
365

g
1

GPP
t

P t
=

=å  [9]

and

( )
365

e
1

RE
t

R t
=

=å  [10]

while the annual net ecosystem production (NEP) was obtained as

NEP GPP RE= -  [11]

Table 4. Numerical values and the goodness-of-fit characteristics of the parameters apparent quantum yield (a), photosynthetic capacity (Amax),  convex-
ity of the light response (q ratio), respiration rate at zero temperature (r0), the exponential temperature coefficient (kT), and the curvature parameter of 
the vapor pressure deficit response (sVPD) of Eq. [3–4] for Day of the Year 223 at the Mead rainfed soybean site, 2002.

Parameter a Amax q ratio r0 kT sVPD

mg CO2 mmol–1 mg CO2 m
–2 s–1 mg CO2 m

–2 s–1 °C–1 kPa

Value 0.00192 1.748 0.718 0.108 0.0404 3.246
SE 0.00013 0.097 0.107 0.027 0.0098 0.114

t value 14.90 18.09 6.72 3.98 4.2 28.47

p value 0 0 3.69 ´ 10–8 2.68 ´ 10–4 1.74 ´ 10–4 0

Table 3. Numerical values and the goodness-of-fit characteristics of the parameters apparent quantum yield (a), photosynthetic capacity (Amax),  convex-
ity of the light response (q ratio), respiration rate at zero temperature (r0), and the exponential temperature coefficient (kT) in Eq. [2] for Day of the Year 
179 at the Haller alfalfa site, 2003.

Parameter a Amax q ratio r0 kT

mg CO2 mmol–1 mg CO2 m
–2 s–1 mg CO2 m

–2 s–1 °C–1

Value 0.00134 1.541 2.567 ´ 10–8 0.0964 0.0688

SE 0.00038 0.142 0.0938 0.0707 0.0301

t value 3.554 10.85 2.736 ´ 10–7 1.364 2.286

p value 0.0017 1.6 ´ 10–10 1.0 0.186 0.032

Table 2. Specifications for graphs in Fig. 2.

Symbol Site Crop Year Day of the year
A Trace Gas Manitoba, MB, Canada faba bean 2007 201
B Rosemount conventional, Minnesota soybean 2006 184
C Kellogg Biological Station, Michigan alfalfa 2006 182
D Brooks Field 10, Iowa soybean 2008 216
E Fermi agricultural site, Illinois soybean 2007 182
F Mead rainfed, Nebraska soybean 2002 223
G Haller, PA alfalfa 2003 179
H Bondville, IL soybean 2002 215
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We found that for comparative purposes, it was useful to 
introduce additional parameters of average daytime respiration 
rate, rday(t), and average nighttime respiration rate, rnight(t), 
calculated as

( )
( )

( ) ( )
day

day
2 1

1000R t
r t

t t
=

t -t
 [12]

( )
( )

( ) ( )
night

night
2 1

1000
86, 400

R t
r t

t t
=

é ù- t -të û

 [13]

where t1(t) and t2(t) are the moments of sunrise and sunset for 
the tth calendar day respectively (measured in seconds to obtain 
rday and rnight in milligrams of CO2 per square meter per second 
if Rday is in grams of CO2 per square meter per light period  and 
Rnight is in grams of CO2 per square meter per dark period).

Photosynthetic Light-Use Efficiency

Light-use efficiency characteristics are often used as important 
tools of comparative ecological analysis. From a number of 
coefficients suggested for this purpose, we used the coefficient 
of gross photosynthetic light-use efficiency, LUE, defined as 
a ratio of daily gross photosynthesis Pg to daily incoming of 
photosynthetically active radiation Q (Cooper, 1970; Gilmanov 
et al., 2005):

gLUE
P
Q

=  [14]

While the coefficient of apparent quantum yield (initial slope 
of the light response), a, characterizes the potential physiological 
light-use efficiency, LUE is a measure of ecologically realized 
photosynthetic productivity, making comparison of the a and 
LUE values an important tool of comparative ecological analysis.

RESULTS AND DISCUSSION
The modified nonrectangular hyperbolic model with VPD 

limitation in the form of Eq. [3–5] proved to be an adequate tool 
for describing tower-based net CO2 exchange measurements in 
legume crops and partitioning them into photosynthesis and 
respiration components. Figure 2 illustrates application of the 

model: Fig. 2A–2F and 2H show models with VPD limitation 
(Eq. [3–5]), while Fig. 2G illustrates the model driven only by 
the light and soil temperature factors (Eq. [2]). The left graph 
on each panel shows a simple light-response scatterplot fitted 
by nonrectangular hyperbolae F(Q) with daytime respiration 
constant during the day; the surface on the right panel shows 
the (Q,Ts) response described by Eq. [3–5] with the average 
daily VPD value; the blue dots at the right show the original 
measured F values and the red dots show actual model predicted 
F(Q,Ts,VPD) accounting for VPD variability.

To illustrate parameter estimation procedures, Table 3 
shows estimated values and the goodness-of-fit characteristics 
for the model of Eq. [2] fitted for Day 179 of the 2003 season 
at the Haller alfalfa site (Fig. 2G) when no substantial VPD 
limitation was observed (mean daily VPD = 1.0 kPa, VPDmax = 
2.1 kPa). The model shows a significant temperature-response 
coefficient kT = 0.069 °C–1, with the value close to van’t Hoff’s 
Q10 = 2.0. For this case, the close-to-zero estimate of the 
convexity parameter q should also be noted, indicating that 
the light response for this day may apparently be described by a 
rectangular hyperbola, characterized by q = 0.

The data in Table 4 illustrate the parameters of Eq. [3–5] 
fitted for Day 223 of 2002 at the Mead soybean site. As can be 
seen on the light-response diagram of Fig. 2F, this day at this site 
was marked by a substantial decrease in net CO2 uptake (VPD 
reached 3.4 kPa in the afternoon hours), resulting in a hysteresis-
like loop on the (Q,F) diagram. The model reflects this fact by 
generating highly significant (high t values) estimates of all the 
parameters, including the parameters of temperature response, r0 
and kT, and VPD limitation, sVPD (Table 4).

Ecosystem-scale ecophysiological parameters generated by 
the partitioning method described above exhibited pronounced 
seasonal dynamics, which reflects physiological and phenological 
changes of the biota in the field, as well as changes in biomass 
and leaf area characteristics. To facilitate comparison of 
parameters among sites and years, we found it useful to calculate 
weekly means and the errors of the means for each site-year. 
The data in Fig. 4 provide an example of seasonal patterns 
of parameters at the weekly time scale, demonstrated by the 
soybean field at the Fermi agricultural site in 2007.

Maximum daily and maximum mean weekly values of the 
ecophysiological parameters of legume crops for the site-years of 

Fig. 3. Cumulative distribution functions of the daily vapor pressure deficit (VPD) response curvature parameter values, sVPD, for: (A) a faba bean crop at 
the Trace Gas Manitoba site, 2007; and (B) a soybean crop at the Bondville site, 2002. The dashed arrows illustrate determination of the DVPD parameter 
as the number of days when the curvature parameter of the VPD-dependent factor (Eq. [5]) was less than or equal to the critical value sVPD = 4 kPa.
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this study are summarized in Table 5. These data illustrate the 
magnitudes and variability of the parameters among leguminous 
crops as well as for different years at the same crop site. They may 
also be compared with corresponding parameters for grain crops. 
The maximum mean weekly apparent quantum yield for legumes, 
47 to 48 mmol mol–1 achieved for the alfalfa crop at the Kellogg 
Biological Station in 2006 and Mandan in 2010, is less than the 
value of 50.30 mmol mol–1 estimated for a maize crop at the 
Bondville site in 2003 but higher than 37.23 mmol mol–1 recorded 
for the hard red spring wheat field at the Trace Gas Manitoba site 
in 2008 (Gilmanov et al., 2013). Our estimate of the maximum 
daily photosynthetic capacity, Amax = 2.3 mg CO2 m–2 s–1, for 
alfalfa at the Haller site compares well with the estimate of Amax = 
2.4 mg CO2 m–2 s–1 for alfalfa reported by Asseng and Hsiao 
(2000) using the BREB/CO2 gradient technique. The maximum 
mean weekly Amax,wk = 2.35 mg CO2 m–2 s–1 for legumes 
recorded at the soybean field of the maize–soybean rotation at 
Bondville in 2004 is smaller than 3.63 mg CO2 m–2 s–1 estimated 
for the irrigated maize crop of the same rotation at the Mead site in 
2003 but higher than 2.02 mg CO2 m–2 s–1 found for the spring 
wheat crop from the Trace Gas Manitoba site in 2008.

The maximum mean weekly respiration rate of 0.48 mg 
CO2 m–2 s–1 registered in the pea field of the Oensingen site 

in 2010 is lower than 0.63 mg CO2 m–2 s–1 measured in the 
maize field at the Fermi agricultural site in 2006 but higher 
than the 0.27 mg CO2 m–2 s–1 estimated for the winter wheat 
crop of the Ponca City site in 1999 (Gilmanov et al., 2013).

For the peanut crop at the Vienna site with LAImax = 
3.8 m2 m–2, we estimated amax,wk = 28.4 mmol mol–1, 
Amax,wk = 1.88 mg CO2 m–2 s–1, and rday,max,wk = 0.23 mg 
CO2 m–2 s–1. This compares well with the values amax,wk  = 
43.8 mmol mol–1, Amax,wk = 2.75 mg CO2 m–2 s–1, and 
rday,max,wk = 0.23 mg CO2 m–2 s–1 obtained by Pingintha et 
al. (2010) for a much more productive peanut crop in Georgia 
with much higher LAImax (7.6 m2 m–2).

The maximum daily values and maximum mean weekly 
parameter values presented in Table 5 show the ranges of 
variability of the ecophysiological parameters of legume 
crops, demonstrating coefficients of variation from 18 to 28%. 
Comparison of the ecophysiological parameters of legumes 
with the corresponding parameters estimated for grain crops in 
North America, summarized by Gilmanov et al. (2013) using the 
same methods, demonstrate (Table 6) that both the daily and 
the weekly maximums of the apparent quantum yield (amax) of 
legumes are not significantly different from those of maize but 
are significantly higher than for wheat fields. The photosynthetic 

Fig. 4. Seasonal dynamics of major ecophysiological parameters of the soybean crops at the Fermi agricultural site, 2007: (A) apparent quantum yield, 
a; (B) photosynthetic capacity, Amax; (C) gross photosynthetic light-use efficiency, LUE; and (D) daytime ecosystem respiration rate, rday. Dots show 
weekly means of the parameters and the error bars show standard errors of the mean.



Agronomy Journa l  •  Volume 106, Issue 2 •  2014 553

Ta
bl

e 
5.

 M
ax

im
um

 v
al

ue
s 

of
 t

he
 d

ai
ly

 (
in

de
x 

m
ax

) 
an

d 
m

ea
n 

w
ee

kl
y 

(in
de

x 
m

ax
,w

k)
 e

st
im

at
es

 o
f t

he
 m

aj
or

 e
co

ph
ys

io
lo

gi
ca

l p
ar

am
et

er
s 

ap
pa

re
nt

 q
ua

nt
um

 y
ie

ld
 (
a

), 
ph

ot
os

yn
th

et
ic

 c
ap

ac
it

y 
(A

), 
da

yt
im

e 
re

sp
ir

a-
tio

n 
ra

te
 (r

da
y)

, l
ig

ht
 u

se
 e

ffi
ci

en
cy

 (
LU

E)
, a

nd
 t

he
 n

um
be

r 
of

 d
ay

s 
w

ith
 a

 v
ap

or
 p

re
ss

ur
e 

de
fic

it 
lim

it
at

io
n 

on
 p

ho
to

sy
nt

he
si

s 
(D

V
PD

) 
of

 t
he

 le
gu

m
e 

cr
op

s.

Si
te

C
ro

p
Ye

ar
a

m
ax

a
m

ax
,w

k
A m

ax
A m

ax
,w

k
r d

ay
,m

ax
r d

ay
,m

ax
,w

k
LU

E m
ax

LU
E m

ax
,w

k
D

V
PD

—
—

 m
m

ol
 m

ol
–1

 —
—

—
—

 m
g 

C
O

2 
m

–2
 s

–1
 —

—
—

—
 m

g 
C

O
2 

m
–2

 s
–1

 —
—

—
—

 m
m

ol
 m

ol
–1

 —
—

d
Ed

m
on

to
n,

 A
B,

 C
an

ad
a

al
fa

lfa
20

10
54

.3
0

32
.5

8
1.

99
1.

77
0.

38
8

0.
27

9
36

.9
7

25
.5

0
53

Tr
ac

e 
G

as
 M

an
ito

ba
, M

B,
 C

an
ad

a
fa

ba
 b

ea
n

20
07

56
.8

1
45

.4
3

2.
69

1.
88

0.
53

3
0.

40
0

54
.7

3
24

.9
2

40
O

en
si

ng
en

-2
, S

w
itz

er
la

nd
pe

a
20

10
59

.0
9

43
.3

1
2.

05
1.

39
0.

72
5

0.
47

9
39

.8
9

29
.1

7
33

M
an

da
n 

H
5,

 N
or

th
 D

ak
ot

a
al

fa
lfa

20
10

56
.0

0
47

.8
0

1.
83

1.
31

0.
51

0
0.

35
0

48
.1

0
28

.8
6

29
R

os
em

ou
nt

 a
lte

rn
at

iv
e,

 M
in

ne
so

ta
so

yb
ea

n/
ry

e
20

04
46

.5
7

33
.3

2
2.

13
1.

68
0.

44
0

0.
25

0
36

.3
7

25
.3

0
50

R
os

em
ou

nt
 c

on
ve

nt
io

na
l, 

M
in

ne
so

ta
so

yb
ea

n
20

04
47

.5
5

34
.9

0
1.

80
1.

59
0.

29
1

0.
23

4
38

.2
1

24
.1

7
–

R
os

em
ou

nt
 c

on
ve

nt
io

na
l, 

M
in

ne
so

ta
so

yb
ea

n
20

06
68

.1
8

42
.3

6
1.

83
1.

52
0.

46
4

0.
34

8
42

.5
8

25
.5

45
A

vi
gn

on
, F

ra
nc

e
pe

a
20

05
54

.8
1

36
.9

0
2.

05
1.

57
0.

41
0

0.
29

6
38

.6
1

22
.2

6
53

Le
nn

ox
, S

D
so

yb
ea

n
20

12
35

.1
4

26
.8

8
1.

50
0.

96
0.

21
1

0.
16

4
23

.7
9

15
.9

7
68

Ke
llo

gg
 B

io
lo

gi
ca

l S
ta

tio
n,

 M
ic

hi
ga

n
al

fa
lfa

20
06

56
.8

2
47

.3
9

1.
99

1.
67

0.
39

9
0.

31
7

52
.0

8
34

.7
4

62
Br

oo
ks

 F
ie

ld
-1

0,
 Io

w
a

so
yb

ea
n

20
08

56
.7

2
40

.8
9

1.
89

1.
44

0.
44

8
0.

31
0

36
.0

4
19

.9
57

56
Fe

rm
i a

gr
ic

ul
tu

ra
l s

ite
, I

lli
no

is
so

yb
ea

n
20

07
52

.7
36

.4
5

2.
27

1.
87

0.
46

0
0.

29
1

50
.7

85
30

.5
8

50
Fe

rm
i a

gr
ic

ul
tu

ra
l s

ite
, I

lli
no

is
so

yb
ea

n
20

09
48

.6
5

34
.5

0
2.

33
1.

75
0.

31
9

0.
22

7
44

.4
0

31
.0

4
41

A
m

es
, I

A
so

yb
ea

n
20

03
54

.0
3

37
.8

3
2.

1
1.

57
0.

46
0

0.
35

2
37

22
.9

5
–

M
ea

d 
ra

in
fe

d,
 N

eb
ra

sk
a

so
yb

ea
n

20
02

51
.7

9
42

.1
8

2.
03

1.
85

0.
43

8
0.

39
6

42
.8

30
.1

1
51

M
ea

d 
ra

in
fe

d,
 N

eb
ra

sk
a

so
yb

ea
n

20
04

49
.2

7
39

.9
9

2.
35

2.
20

0.
35

7
0.

32
1

35
.3

0
25

.1
6

61
M

ea
d 

ir
ri

ga
te

d 
ro

ta
tio

n,
 N

eb
ra

sk
a

so
yb

ea
n

20
02

61
.2

8
38

.2
7

2.
50

2.
18

0.
49

1
0.

39
6

38
.8

2
28

.5
8

–
Bo

rg
o 

C
io

ffi
, I

ta
ly

al
fa

lfa
20

03
59

.0
2

42
.3

0
2.

15
1.

72
0.

37
5

0.
29

2
41

.8
3

28
.1

7
42

H
al

le
r, 

PA
al

fa
lfa

20
03

65
.9

1
45

.9
6

2.
30

1.
70

5
0.

47
1

0.
37

9
48

.4
7

33
.6

9
–

Bo
nd

vi
lle

, I
L

so
yb

ea
n

19
98

55
.3

7
26

.6
4

1.
57

1.
27

0.
34

0.
25

4
36

.1
58

23
.6

6
–

Bo
nd

vi
lle

, I
L

so
yb

ea
n

20
00

50
.1

8
35

.9
7

2.
10

1.
73

0.
36

6
0.

28
0

39
.9

8
25

.3
2

–
Bo

nd
vi

lle
, I

L
so

yb
ea

n
20

02
48

.9
7

36
.8

5
2.

30
1.

89
0.

39
4

0.
31

46
35

.3
75

31
.6

6
73

Bo
nd

vi
lle

, I
L

so
yb

ea
n

20
04

61
.4

5
46

.1
7

2.
75

2.
35

0.
42

9
0.

30
6

53
.5

7
40

.3
0

34
Bo

nd
vi

lle
, I

L
so

yb
ea

n
20

06
48

.9
5

36
.4

5
2.

40
1.

88
0.

45
2

0.
32

2
46

.2
1

29
.9

6
50

La
m

on
t A

R
M

 m
ai

n,
 O

kl
ah

om
a

so
yb

ea
n

20
06

28
.8

9
14

.5
1

0.
55

0.
44

0.
25

8
0.

11
1

10
.1

1
7.

17
58

W
in

fr
ed

 T
ho

m
as

 A
R

S, 
A

la
ba

m
a

so
yb

ea
n/

w
in

te
r 

w
he

at
20

07
–

34
–

1.
30

–
0.

22
3

–
13

.7
2

–
W

in
fr

ed
 T

ho
m

as
 A

R
S, 

A
la

ba
m

a
so

yb
ea

n/
w

in
te

r 
w

he
at

20
08

–
45

.6
–

1.
13

–
0.

22
9

–
13

.3
1

–
W

in
fr

ed
 T

ho
m

as
 A

R
S, 

A
la

ba
m

a
so

yb
ea

n/
w

in
te

r 
w

he
at

20
09

–
45

.7
–

1.
10

–
0.

13
8

–
18

.6
2

–
V

ie
nn

a, 
G

A
pe

an
ut

20
05

31
.8

2
28

.4
0

2.
05

1.
88

0.
30

1
0.

22
8

26
.9

4
22

.1
5

61
M

in
.

28
.8

9
14

.5
1

0.
55

0.
44

0.
21

0.
11

10
.1

1
7.

17
29

M
ax

.
68

.1
8

47
.8

2.
75

2.
35

0.
73

0.
48

54
.7

3
40

.3
0

73
M

ea
n

52
.3

2
37

.9
1

2.
06

1.
61

0.
41

0.
29

39
.8

1
25

.2
6

51
SE

9.
29

7.
51

0.
43

0.
40

0.
10

0.
08

9.
62

7.
00

11
.7

2
C

V
18

20
21

25
25

28
24

2 
= 

23
n

26
29

26
29

26
29

26
29

20



554 Agronomy Journa l  •  Volume 106, Issue 2 •  2014

capacity (Amax) of the legume crops at both daily and weekly 
scales is significantly lower than that of maize and significantly 
higher than for wheat crops. The metabolic parameter of daytime 
respiration rate (rday) of legumes is significantly different from 
both maize and wheat, being lower than for maize but higher 
than for wheat. Maximum daily values of LUE of legumes are 
not significantly different from those of maize (which is in 
agreement with the apparent quantum yield, amax, data in Table 
6), but mean weekly LUE data for legumes are significantly 
lower than in maize. Compared with wheat, the maximum 
daily LUE values for legumes are significantly higher, but 
this is not true for the weekly values. Thus, high physiological 
potentials of the legumes are not always realized in long-term 
(weekly) performance, resulting in LUEmax,wk values for legumes 
significantly lower than for maize and not significantly higher 
than for wheat (Table 6).

For comparison of the extent of VPD limitation between sites 
and years for those sites for which the model of Eq. [3–5] with 
VPD dependence of the CO2 exchange was applied, we used the 
DVPD parameter calculated from the cumulative distribution 
of the curvature parameter, sVPD, of Eq. [5] as the total number 
of days for which VPDmax ³ 1 kPa and sVPD £ 4 kPa (Fig. 3). 
We found that the number of days when an atmospheric water 
deficit was affecting the productivity of the legume crops varied 
from 29 to 73 d (Table 5), with a trend of increasing from north 
to south, most closely correlating with the sum of temperatures 
>5°C [correlation coefficient r(Tsum5, DVPD) = 0.37].

Source–Sink Activity of the Legume Crop Fields

Time series of daily values of photosynthesis Pg(t), respiration 
Re(t), net daily CO2 flux F(t), and its cumulative sum, the 
cumulative net ecosystem production, iNEP(t), provide a 
comprehensive description of the dynamics of the CO2 exchange 
in the legume crop fields. Examples in Fig. 5 show that the 
legume crops exhibited a variety of patterns of the integrated 
net ecosystem production curves iNEP(t), from predominantly 
accumulative, demonstrated by alfalfa crops (Fig. 5C and 5G) 
through nearly equilibrium, recorded in the faba bean crop 
cultivated for forage and in highly productive soybean crops (Fig. 
5A, 5E, and 5H), to the negative net CO2 balance observed on 
other soybean fields (Fig. 5B, 5D, and 5F).

The annual integrals of gross primary production, total 
ecosystem respiration, and the net ecosystem production 
calculated according to Eq. [3–5], with Pg(tj) and Re(tj) for 
missing days tj gap-filled using interpolated parameters, are 

presented in Table 7 along with the maximum annual values 
of daily Pg,max, Re,max, and Fmax. The maximum daily rate of 
photosynthetic assimilation of the legume crops, Pg,max, in 
Table 7 was 71.1 g CO2 m–2 d–1 recorded for the soybean crop 
at the Bondville site in 2004, which is lower but comparable to 
the maximum of 82 g CO2 m–2 d–1 obtained from the Thomas 
and Hill (1949) estimate of Pg,max = 56 g dry matter m–2 d–1 
for an experimental alfalfa crop (assuming 40% C content of 
the dry matter). This Pg,max = 71.1 g CO2 m–2 d–1 for legumes 
is lower than 110 and 79 g CO2 m–2 d–1 established at the 
maize and wheat flux tower sites, respectively, of midcontinent 
North America (Gilmanov et al., 2013). At the same time, the 
maximum daily respiration Re,max = 62.6 g CO2 m–2 d–1 for 
legumes was higher than 32 g CO2 m–2 d–1 established for 
wheat fields and comparable to 64 g CO2 m–2 d–1 for maize 
fields (Gilmanov et al., 2013).

Our estimates of the Pg,max, Re,max, and Fmax in legume 
fields are consistent with data of other researchers who used 
different methods. Suyker et al. (2005) estimated Pg,max = 66 
and Re,max = 44 g CO2 m–2 d–1 for the soybean rotation of the 
irrigated Mead site in 2002, which compares with our estimates 
of 59 and 41 g CO2 m–2 d–1 for the same site-year. Peng and 
Gitelson (2012) estimated the error of the daily soybean Pg 
values for the same site as SE = ±8.3 g CO2 m–2 d–1. Applying 
this error value to statistically compare both daily photosynthesis 
and respiration maxima, the difference between the estimates 
of Suyker et al. (2005) and our estimates lies within the ±2 SE 
range and therefore may be considered not significant. According 
to Verma et al. (2005) and Peng and Gitelson (2012) for the 
rainfed soybean crop at the Mead site in 2002, Pg,max = 53.9 g 
CO2 m–2 d–1 and Fmax = 23.8 g CO2 m–2 d–1, which are also 
rather close to our estimates for the same site-year of Pg,max = 
55.7 g CO2 m–2 d–1 and Fmax = 26.2 g CO2 m–2 d–1.

In terms of the annual totals, which reflect not only the 
intensive physiological parameters of species and cultivars but 
also such extensive parameters as length of the period of active 
photosynthesis during the year, the situation is as follows: the 
mean annual GPP (Eq. [9]) from flux-tower sites in maize 
fields was 4480 g CO2 m–2 yr–1, in wheat fields it was 2393 g 
CO2 m–2 yr–1 (Gilmanov et al., 2013), and in legume fields it was 
3056 g CO2 m–2 yr–1 (this study). The corresponding values for 
ecosystem respiration RE (Eq. [10]) are 3269 for maize, 2276 for 
wheat, and 3159 g CO2 m–2 yr–1 for legume crops. As a result, the 
mean annual net ecosystem production NEP (Eq. [11]) amounts 
to 1211 g CO2 m–2 yr–1 for maize, 116 g CO2 m–2 yr–1 for wheat 

Table 6. Mean ecophysiological parameters of the maximum daily (index max) and weekly (index max,wk) apparent quantum yield (a), photosynthetic 
capacity (A), daytime respiration rate (rday), and light use efficiency (LUE) for legume, maize, and wheat crops estimated from flux-tower measurements 
(maize and wheat data according to Gilmanov et al., 2013).

Crop Parameter amax amax,wk Amax Amax,wk rday,max rday,max,wk LUEmax LUEmax,wk

—— mmol mol–1 —— —— mg CO2 m
–2 s–1 —— —— mg CO2 m

–2 s–1 —— —— mmol mol–1 ——
Legumes avg. 52.3 37.9 2.06 1.61 0.41 0.29 39.8 25.3

n 26 29 26 29 26 29 26 29
Maize avg. 49.4 ns 39.8 ns 2.93*** 2.62*** 0.51* 0.37** 44.1 ns 34.3***

n 17 17 17 17 17 17 17 17
Wheat avg. 35.9*** 29.7** 1.7* 1.34* 0.31** 0.23* 29.7** 20.8 ns

n 9 9 9 9 9 9 9 9
* For maize, hypothesis that maize mean > legume mean is significant at p £0.05; for wheat, hypothesis that wheat mean < legume mean is significant at p £0.05; ns, not significant.
** For maize, hypothesis that maize mean > legume mean is significant at p £0.01; for wheat, hypothesis that wheat mean < legume mean is significant at p £0.01.
*** For maize, hypothesis that maize mean > legume mean is significant at p £0.001; for wheat, hypothesis that wheat mean < legume mean is significant at p £0.001.
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Fig. 5. Seasonal dynamics of gross photosynthesis Pg, ecosystem respiration Re, net ecosystem CO2 exchange F, and accumulated net ecosystem 
production iNEP in selected legume fields: (A) faba bean, Trace Gas Manitoba, 2007; (B) soybean, Rosemount conventional, 2006; (C) alfalfa, Kellogg 
Biological Station, 2006; (D) soybean, Brooks Field 10, 2008; (E) soybean, Fermi agricultural site, 2007; (F) soybean, Mead rainfed, 2002; (G) alfalfa, 
Haller, 2003; and (H) soybean, Bondville, 2002.
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(Gilmanov et al., 2013), and –103 g CO2 m–2 yr–1 for legume 
crops. Within the legume group, the data show that perennial 
legumes (alfalfa) were on average a strong sink, with mean NEP 
of 976 g CO2 m–2 yr–1 (range 546–1175 g CO2 m–2 yr–1), 
while annual legumes demonstrated a moderate to strong source 
activity, with mean NEP of –327 g CO2 m–2 yr–1 (range –2066 
to 763 g CO2 m–2 yr–1), although it should be borne in mind 
that ecosystem respiration for annual legumes definitely includes 
decomposition of the net production (e.g., root residue) of the 
previous crop (Gebremedhin et al., 2012).

Our estimates of the GPP and RE for the rainfed (2964 and 
3483 g CO2 m–2 yr–1) and irrigated rotation (3165 and 3277 g 
CO2 m–2 yr–1) soybean crops at the Mead station in 2002 (Table 
7) may be compared with tower-based estimates by Suyker et 
al. (2005) and model-based data by Grant et al. (2007). Suyker 
et al. (2005) obtained GPP and RE values of 3109 and 3175 g 
CO2 m–2 yr–1 and 3542 and 3670 g CO2 m–2 yr–1 for the 
rainfed and irrigated fields, respectively, showing differences 
?10% in magnitude from our estimates, which are mostly due to 
differences in the estimation of daytime ecosystem respiration. 
Nevertheless, those differences are much smaller than the 
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legume fields, at the qualitative level, these numbers compare 
well with the shift of ?800 g CO2 m–2 yr–1 of the legume 
points to the left relative to the cereal points, as shown in Fig. 
6, where the mean NEP for maize is 1211 g CO2 m–2 yr–1, 
116 g CO2 m–2 yr–1 for wheat, and –135 g CO2 m–2 yr–1 for 
legumes. In contrast to annual legumes, perennial legume 
crops (alfalfa) demonstrated pronounced CO2 sink activity, 
with corresponding points on the GPP–RE diagram located to 
the right of the main diagonal. Nevertheless, on average, they 
also are shifted to the left compared with maize crops (Fig. 6), 
apparently reflecting the metabolic costs of N2 fixation.

CONCLUSIONS
1. Ecosystem-scale physiological parameters of apparent quan-

tum yield, photosynthetic capacity, ecosystem respiration, 
and photosynthetic light-use efficiency of the legume crops 
of North America estimated from flux-tower measurements 
using light-response function methods have intermediate 
values between the higher values for maize and lower values 
for wheat crops.

2. During the growing period, the parameters of quantum 
yield, photosynthetic capacity, respiration rate, and light-use 
efficiency exhibited pronounced patterns of seasonal varia-
tion, reflecting combined changes in intensive (physiologi-
cal and phenological state) and extensive (biomass and leaf 
area) characteristics of the plant canopy, which have strong 
implications for the “light-use efficiency-based” models of 
ecosystem CO2 exchange.

3. In periods of strong limitation of plant productivity due to 
water deficit, it is necessary to modify the classical nonrect-
angular hyperbolic equation of the canopy CO2 exchange by 
introduction of VPD-dependent control of photosynthetic 
uptake. The curvature coefficient of the VPD response, 
sVPD (Eq. [5]), and characteristics derived from it, like the 
number of days when sVPD < 4 and VPDmax ³ 1.0 kPa, 
may be used to quantify the level of VPD limitation of CO2 
exchange for comparative purposes.

4. Perennial legume crops (alfalfa) perform as strong sinks 
for atmospheric CO2, with mean NEP of 980 (maximum 
1200) g CO2 m–2 yr–1, but remain less productive than 
maize crops, with mean NEP of 1200 (maximum 2100) g 
CO2 m–2 yr–1, reduction in the alfalfa NEP being compa-
rable to the costs of symbiotic N2 fixation estimated at 220 
to 440 g CO2 m–2 yr–1.

5. Annual RE controls a larger fraction of the GPP for annual 
legume crops than for cereals (Fig. 6), also reflecting gener-
ally lower NEP values and the potential for CO2–source 
activity, particularly for soybean and pea crops. This conclu-
sion has four far-reaching implications. First, metabolic ex-
penditures for N2 fixation combined with the comparatively 
short growing season(s) may be among the factors contribut-
ing to lower annual NEP. Second, any management activity 
that affects C exchange during the period when legumes are 
not present can greatly change the annual C balance. These 
activities range from prolonging the fallow period (increas-
ing the likelihood of an annual source) to multicropping 
systems (increasing the sink capacity), or other management 
activities, e.g., increased irrigation or fertilizer use. Third, any 
change in the abiotic drivers that affect the process rates (e.g., 

temperature, water availability, or light) will in turn affect 
the source–sink strength of these legume crops. A change in 
these drivers can be in the magnitude, quality, and periodic-
ity, as well as the timing of seasonal changes, e.g., phenology, 
early-onset spring, or early-onset summer drought. Lastly, in-
teractions among natural drivers, management choices, and 
agronomic economies are likely to change local to regional C 
balances of future legume cropping—but also bound within 
the ecophysiological parameters presented here.
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