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Anthropogenic emissions of nitrous oxide (N2O), a trace gas with severe environmental costs, are greatest from
agricultural soils amended with nitrogen (N) fertilizer. However, accurate N2O emission estimates at fine spatial
scales aremade difficult by their high variability,which represents a critical challenge for themanagement of N2O
emissions. Here, static chamber measurements (n= 60) and soil samples (n= 129) were collected at approxi-
mately weekly intervals (n = 6) for 42-d immediately following the application of N in a southern Minnesota
cornfield (15.6-ha), typical of the systems prevalent throughout the U.S. Corn Belt. These data were integrated
into a geostatistical model that resolved N2O emissions at a high spatial resolution (1-m). Field-scale N2O emis-
sions exhibited a high degree of spatial variability, and were partitioned into three classes of emission strength:
hotspots, intermediate, and coldspots. Rates of emission from hotspots were 2-fold greater than non-hotspot lo-
cations. Consequently, 36% of the field-scale emissions could be attributed to hotspots, despite representing only
21% of the totalfield area. Variations in elevation caused hotspots to develop in predictable locations, whichwere
prone to nutrient and moisture accumulation caused by terrain focusing. Because these features are relatively
static, our data and analyses indicate that targeted management of hotspots could efficiently reduce field-scale
emissions by as much 17%, a significant benefit considering the deleterious effects of atmospheric N2O.
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1. Introduction
Nitrous oxide (N2O) is a potent greenhouse gas (Hartmann et
al., 2013) and the leading cause of stratospheric ozone loss
(Ravishankara et al., 2009). In response to its deleterious environ-
mental effects, efforts to mitigate agricultural emissions, which ac-
count for nearly 75% of the national anthropogenic source (US
Department of State, 2014), are in development. Such efforts
often focus on N management improvements (e.g., optimizing the
source, depth, and timing of fertilizer) at the field or farm scale.
Yet, the findings from these mitigation strategies have been highly
variable (Venterea et al., 2016), in part because episodic and spa-
tially variable emissions hinder accurate budget estimates
(Mathieu et al., 2006; Velthof et al., 2000). For instance, field-
scale N2O emission measurements with chambers can yield a coef-
ficient of variation (CV) as high as 500% (Folorunso and Rolston,
1984; van den Pol-van Dasselaar et al., 1998), suggesting that our
ability to accurately determine the outcome of mitigation practices
is cause for concern. At fine sub-field spatial scales (b1 m2 to
1000 m2), N2O “hotspots” appear to be disproportionately strong
sources (Parkin, 1987; van den Heuvel et al., 2009), yet their influ-
ence over cumulative field-scale emissions remains uncertain be-
cause high-resolution data are rarely available. For farmers to
manage N2O emissions effectively, subfield-scale emission esti-
mates are necessary to identify potential hotspots and to bench-
mark their effects on field-scale mitigation practices.

Light detection and ranging (LiDAR) digital elevation models
(DEMs) are powerful tools that can help guide precision agricul-
ture and conservation strategies (Galzki et al., 2011; Wan et al.,
2014). When coupled with geospatial techniques, this emerging
technology helps generate high-resolution maps of agriculturally
relevant information such as the presence of hydric soils (Fink
and Drohan, 2016), moisture content (Moore et al., 1993; Murphy
et al., 2009), and soil nitrogen status (Weintraub et al., 2014) that
allow farmers to focus extra attention and resources on critical
areas. Furthermore, complex processes like methane emissions
(Sundqvist et al., 2015) have been characterized using DEMs, sug-
gesting that this technology can better resolve the field-scale spa-
tial distribution of N2O emissions.

Indeed, differences in topography and landscape position have a
strong influence on N2O emissions (Ambus, 1998; Ball et al., 1997)
because terrain gradients redistribute moisture and nutrients that
are necessary for the production of N2O. Consequently, N2O emis-
sion frequency distributions are typically positively skewed by a
few strong sources (Parkin, 1987; Velthof et al., 2000) observed
at topographically low positions (Ambus, 1998). Here, terrain fo-
cusing enables the development of hotspots by concentrating or-
ganic matter, moisture, and nitrate (NO3

−) into localized, but
potentially predictable areas. Taken together, these soil character-
istics can support disproportionately high rates of denitrification
(Groffman et al., 2009) that we posit are capable of sustaining
high N2O emissions. However, field-scale emission distribution
maps remain coarse, since an unrealistic number of static chambers
are required to resolve the high variability, implying poor con-
straints on hotspots.

With the aid of DEMs and geospatial analyses, denitrification
hotspots can be isolated and mapped by pinpointing locations with
the highest probability of moisture and NO3

− accumulation
(Anderson et al., 2015). We propose that a similar approach can re-
solve the distribution of N2O emissions at a high spatial resolution
that will guide targeted mitigation practices. Here, we examine the
spatial distribution of N2O fluxes and cumulative emissions in a
strip-tilled cornfield to address three questions: 1) can DEMs help
predict where N2O hotspots will develop on the landscape; 2) how
significant are hotspots in the cumulative field-scale budget; and 3)
how can DEMs be used to guide N management and N2O mitigation?
2. Materials and methods

2.1. Site description and experimental design

The tile-drained, corn-soybean rotation research field (15.6-ha)
was located on a private farm 11-km south of Northfield, Minneso-
ta (44°21′37.2″N, 93°12′14.8″W). The predominant underlying soil
is a Prinsburg silty clay loam (Typic Endoaquolls, USDA Classifica-
tion) overlying a loam. Measurements were made during the corn
(Zea mays, L.) phase in 2014 on DOY 126, 134, 150, 156, 161, and
168. The field was strip-tilled prior to planting and fertilized with
32% urea ammonium sulfate (UAS) on DOY 125 at a rate of
140 kg N ha−1.

A 3-m micrometeorological tower was installed on the west side
of the field to measure air temperature (VP-4; Decagon Devices, Pull-
man, WA, USA). Observations were recorded with a data logger at 5-
min intervals and averaged hourly (Model EM50; Decagon Devices,
Pullman, WA, USA).

All soil and chamber sample locations were georeferenced using a
GPS device (GeoXH; Trimble, Sunnyvale, CA, USA) connected to aMi-
Fi mobile hotspot (model 2200; Verizon Wireless, Wallingford, CT,
USA) that boosted the horizontal accuracy to 0.1 m. Spatial data
were analyzed using ArcMap (ArcGIS v.10.2; ESRI Inc., Redlands,
CA, USA).

To capture the effects of terrain on N2O emissions and to ensure
potential hotspots were included in the measurement campaign, a
Wetland Probability Index (WPI) map was created (ArcGIS v.10.2;
ESRI Inc., Redlands, CA, USA) to guide the experimental design. The
WPI is a regression function of four factors: the presence of hydric
soils, slope, profile curvature, and a compound topographic index
(CTI) that is a function of flow accumulation and slope. TheWPI pro-
vides a relative metric to describe the likelihood that water will pond
at a specific location and has been used to identify areas for efficient
wetland reclamation (Wan et al., 2014). The WPI was chosen rather
than the widely used soil wetness index (SWI), because the WPI in-
corporates drainage (hydric soils), a recognized shortcoming of the
idealized SWI (Murphy et al., 2009). In the context of N2O produc-
tion, field locations with wetland terrain characteristics are likely
to accumulate moisture and nutrients and are thus candidates for
hotspot formation. These areas are likely to experience more fre-
quent and prolonged periods of soil saturation than upland areas,
in part because of low slopes and elevation. Using high-resolution
(1-m) DEM data (Minnesota Geospatial Information Office) and
soil survey information, each position on the landscape was assigned
a relative WPI value of 0 to 1 (Wan et al., 2014).

Since the natural movement of soil moisture is not confined to the
explicit 1-m WPI grid, the highest spatial resolution is not necessar-
ily appropriate for direct comparison with a dependent variable
(Sørensen and Seibert, 2007). For instance, contour cropping, crop
residues, buffer strips and microtopography can affect the move-
ment of moisture. To minimize these uncertainties, we have reduced
the WPI resolution to 10-m (Anderson et al., 2015; Zhang and
Montgomery, 1994) for direct comparison of N2O emission measure-
ments and surface characteristics. All other analyses used the high-
resolution WPI data set.

Because terrain differences can influence emissions, a stratified
sampling design based on WPI was used to characterize emission
heterogeneity. Groups (n = 6) of chambers (n = 10) were installed
in the field across a range of WPI values on each of the sample dates.
Measurements were taken at approximately weekly intervals for 42-
d immediately after fertilization (DOY 125). Previous experiments in
this field indicate that N2O fluxes are highest in the 20 to 50-d fol-
lowing fertilization (Baker et al., 2014; Fassbinder et al., 2013). Be-
yond this time frame, N2O fluxes decline (Baker et al., 2014; Turner
et al., 2016a) and as a result, the cumulative emission budget is
most sensitive to loss during this brief period.
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2.2. Nitrous oxide measurements

Soil N2O fluxes were measured manually with non-flow-through
non-steady-state chambers with a design that has been used extensive-
ly in agricultural systems (Maharjan and Venterea, 2014; Maharjan et
al., 2014; Venterea and Coulter, 2015). Briefly, each chamber consisted
of a stainless steel base inserted 0.05-m into the soil and a removable
top (0.50 m × 0.29m × 0.086 m). Weather stripping and spring clamps
attached to opposing sides sealed the chamber headspace from ambient
mixing. Each chamber top was vented and covered with an insulated,
reflectivematerial. Measurementswere taken after at least 48-h follow-
ing chamber installation to avoid the potential influence of soil distur-
bance on the flux.

Gas samples were taken from between 0900 and 1500 local time at
0, 15, 30, and 45 min intervals using a 12-mL polypropylene syringe
inserted through a butyl rubber septumon the chamber lid. An ambient
air sample was taken immediately after chamber closure. Samples were
immediately transferred into glass vials sealed with butyl rubber septa
and analyzed within one week using a headspace autosampler
(Teledyne Tekmar;Mason, OH, USA) connected to a gas chromatograph
(model 5990; Agilent/Hewlett-Packard, Santa Clara, CA, USA) equipped
with an electron capture detector. Heliumwas used as the carrier gas in
theGC analyses and the systemwas calibratedwith analytical standards
(Scott Specialty Gases, MI) (Bavin et al., 2009). Concentrations from the
GCwere converted intomass per volume units, assuming ideal gas rela-
tions and a known air temperature while sampling.

The slope of the chamber headspace gas concentration was deter-
mined using either a linear regression or a quadratic model depending
on the curvilinearity of the slope (Parkin et al., 2012; Venterea, 2013).
The linear slope was calculated using the SLOPE function (Excel
v.2013;Microsoft, Redmond,WA) and the quadratic slope was estimat-
ed using the LINEST function at time zero. The quadraticmodel accounts
for suppression of the concentration gradient in response to chamber
closure, but is not always necessary. A linear slopewas chosen if the sec-
ond derivative of the quadratic equation was greater than zero
(Maharjan et al., 2014). Soil fluxes were calculated using:

F ¼ S � V
A

ð1Þ

where: S is the slope, V is the chamber volume (0.02-m3), and A (0.14-
m2) is the chamber footprint. Cumulative N2O emissions were calculat-
ed using trapezoidal integration that assumes linearity between sam-
pling periods.

2.3. Soil analyses

Within 24-hours of gas sampling, soil samples (n= 129) to a depth
of 0.15-m were taken from a georeferenced 35-m grid using a hand
corer. Soil samples were weighed within 2 h. After drying at 105 °C,
gravimetric water content (θ) was determined. Using a 2 M KCl extrac-
tion, soil NO3

− concentration was also determined (Maharjan and
Venterea, 2014). Extracts were filtered (Whatman no. 1) and NO3

−

was quantified using a flow-through injection analyzer (Lachat, Love-
land, CO, USA). The NO3

− intensity (NO3
−
int) was calculated using trap-

ezoidal integration (Maharjan and Venterea, 2014; Venterea et al.,
2011),which assumes a linear slope between sample dates. Conceptual-
ly, NO3

−
int represents the cumulative exposure of soil microbes to NO3

−.
The θ intensity (θint) was calculated similarly. Stepwise regression
models were used to identify any terrain indices that were significantly
correlated with soil chemical variables.

2.4. Geostatistical analyses

Interpolations of high-resolution N2O flux and cumulative emission
data were performed with ordinary cokriging (OC) in ArcMap (ArcGIS
v.10.2; ESRI Inc., Redlands, CA, USA). Ordinary cokriging is a
geostatistical approach that uses more frequently sampled secondary
variables to improve prediction of the primary variable (Vauclin et al.,
1983). This method is useful when the primary attribute is costly or lo-
gistically more difficult to sample than other correlated variables.

Mean N2O fluxes and cumulative emissions were interpolated at a
resolution of 1-m with OC using an omnidirectional “stable” model.
Soil NO3

− and θ were used as secondary variables in this OC model.
The sill (variance), nugget (estimate of independent or micro-scale er-
rors), and range (maximum distance of autocorrelation) of each
model were estimated from the semivariogram. The model parameters
were optimized for estimation of the range value and neighborhood
weights were based on distance. Cross validation was accomplished it-
eratively by comparing the observation to the OC model predicted
value. All inputs were log transformed prior to OC to meet the assump-
tion of normality.

A Getis-Ord Gi* statistical test identified spatial clustering of high
(hotspots) and low (coldspots) emissions at a 95% significance thresh-
old (Ord and Getis, 2010). The field was partitioned into three emission
classes based on their respective z-score significance using ArcMap
(ArcGIS v.10.2; ESRI Inc., Redlands, CA, USA). Locationswith statistically
significant high and low z-scores are referred to as emission hotspots
and coldspots, respectively. All other values, i.e. those with insignificant
(p N 0.05) z-scores, are considered “intermediate” locations. A Kruskal-
Wallis significance test (α = 0.05) was used to determine if there was
a WPI difference among emission classes.

3. Results and discussion

3.1. Meteorology and soil characteristics

Over the course of our measurement campaign, this field received
116.8 mm of precipitation and experienced a mean air temperature of
16.4 °C. Across all samplingdates, themean (range) soil NO3

− concentra-
tion and θ content were 20.5 (0–107) mg NO3

− kg−1 and 25% (12–50),
respectively (Fig. 1). Reported NO3

− concentration and θ content fre-
quency distributions were positively skewed on each sample date
(data not shown), indicating the potential for nutrient processing
hotspots. Following fertilization on DOY 125, the daily mean soil NO3

−

concentrations increased until DOY 157, afterwhich they started declin-
ing, likely as a result of a combination of leaching, denitrification, and
crop uptake.

Analyses indicated that the WPI (10-m) was significantly (p b 0.05)
correlated with θint and NO3

−
int observations (r2 = 0.6 and r2 = 0.14,

respectively) (Fig. 2). These relationships provide evidence of terrain fo-
cusing, implicit in the WPI calculation (e.g., elevation, slope). Indeed,
measurements of θint were significantly (p b 0.05) and negatively corre-
lated with both elevation (r2 = 0.6) and slope (r2 = 0.4). Observations
of NO3

−
int were not as tightly coupled to elevation (r2 = 0.09) or slope

(r2 = 0.05) as θint, probably because of the complex N cycling dynamics
(i.e. including both production and consumption of NO3

−) present in
soils. Overall, the samples with the highest θint and NO3

−
int were ob-

served in locationswith the lowest slope and elevation (Fig. 2), suggest-
ing that the soil factors necessary to sustain high denitrification fluxes
can become concentrated in predictable areas. This finding provides fur-
ther support that remote sensing techniques can offer important in-
sights into field-scale N processing dynamics by identifying locations
that have an elevated likelihood of moisture and nutrient accumulation
(Anderson et al., 2015; Weintraub et al., 2014).

3.2. N2O emissions

3.2.1. Temporal dynamics
Across all chambers and sampling dates, the mean (range) N2O flux

was 1.7 (−1−32) mg N2O\\Nm−2 d−1. The magnitude of N2O fluxes
ranged from 0.7 mg N2O\\N m−2 d−1 on DOY 126, within 24-h of



Fig. 1. Boxplots of a) NO3
− concentration (mgNO3

− kg−1), b) gravimetric moisture content
(%), and c) N2O flux density (mg N2O\\N m−2 d−1). Red points designate outliers.
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fertilization, to a peak emission of 4.3mgN2O\\Nm−2 d−1 on DOY157,
and decreased to a value of 1.8 mg N2O\\N m−2 d−1 on DOY 168 (Fig.
1). Over the sample period, the averageN2Ofluxwas positively correlat-
ed (r2 = 0.06; p b 0.05) to WPI (10-m), indicative of a terrain signal.
Fig. 2. Plotted relationships between topographic indices and soil characteristics (n=129). Top
triangles). Bottom row). Integrated soil NO3

− (NO3
−
int; blue dots); integrated gravimetric wate

legend, the reader is referred to the web version of this article.)
Indeed, elevation (r2 = 0.12; p b 0.01) and slope (r2 = 0.04; p =
0.06) correlated with average N2O fluxes (Fig. 3).

These hourly mean flux density observations are comparable in
strength to a previous study that used 6 automated chambers to esti-
mate the annual N2O budget at this field site during the 2010 corn
phase (Fassbinder et al., 2013). Those investigators determined that
N2O emissions were elevated for 20 to 50 days after fertilization, but
then losses declined precipitously and the average hourly standard de-
viation fell 14-fold, suggesting relatively low temporal measurement
uncertainty beyond this brief period (Fassbinder et al., 2013).
3.2.2. Spatial dynamics
Trapezoidal integration of chamber data indicated that the mean

(SD) cumulative N2O emission was 69 (61) mg N2O\\N m−2 during
the 42-d sampling period. We calculated a field-scale CV of 88% from
the cumulative chamber data, which is lower than some investigations
(Ambus and Christensen, 1995; Ball et al., 1997; Folorunso and Rolston,
1984; Jones et al., 2011; Molodovskaya et al., 2011) and significantly
higher than others (Christensen et al., 1996). The reason for our com-
paratively low CV may have been because our sample size (n = 60)
was relatively large compared to those previous studies and better cap-
tured the spatial heterogeneity. Contrary to our hypothesis, there was
not a significant relationship (r2 = 0.03; p = 0.1), between the WPI
(10-m) and cumulative N2O emissions (Fig. 3). The low r2 was probably
the result of other factors that influence emissions but were not explic-
itly included in our model, e.g., pH, gas diffusivity, and sources of N2O
other than denitrification including nitrification (Kool et al., 2011;
Venterea et al., 2015). Similarly, slope (r2 = 0.04; p = 0.08) was not a
significant correlate with N2O emissions either (Fig. 3). However, eleva-
tion (r2 = 0.09; p b 0.05) exhibited a negative, although weak relation
to N2O emissions (Fig. 3), indicating that topographic position can affect
N2O production.
row). Mean soil NO3
− concentration (blue dots);mean gravimetric water content (θ; green

r content (θint; green triangles). (For interpretation of the references to color in this figure



Fig. 3. Plotted relationships betweenmean N2O fluxes (a, b, and c) and cumulative N2O emissions (d, e, and f) over themeasurement period against topographic indices (n=60). Lines of
linear best fit (red lines) for each graph are included. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Based on a priori hypotheses, θint and NO3
−
int were included as sec-

ondary OC variables to improve the average N2O flux and cumulative
emission model prediction (n = 156,190). Cross-validation of cumula-
tive emissions determined that an omnidirectional stable model was
appropriate. Stable model semivariograms indicate that the sill, nugget,
and range of the average N2O flux were 0.59 mg N2O\\N m−2 d−2,
0.37 mg N2O\\Nm−2 d−2, and 244-m, respectively, while the sill, nug-
get, and range of the cumulative emissions were 0.7 mg N2O\\N2 m−2,
0.43 mg N2O\\N2 m−2, and 320-m, respectively (data not shown). As a
measure of variance, the sill provides a field-scale estimate of spatial un-
certainty, while the nugget is an estimate of eithermeasurement uncer-
tainty or microscale variation (Yanai et al., 2003). Here, a large nugget
effect suggests large uncertainty at fine-scales. Observations taken
Fig. 4. TheWetland Probability Index (WPI) overlain with chambermeasurements (blue circles
model, which interpolatedmean flux density and cumulative emissions at a 1-m spatial resoluti
to the web version of this article.)
frompoints separated by a distance greater than the range are no longer
spatially autocorrelated, a point identified in the semivariogram where
variance becomes asymptotic (i.e. the sill).

During the measurement period, the field emitted on average (SD)
1.4 (0.6) mg N2O\\N m−2 d−1, with a 43% CV, more than half that of
the original chamber data (Fig. 4). Cumulatively, the OC model predict-
ed that 8.7 kg N2O\\N were emitted over the 42-d measurement (Fig.
3). This translates to a field-scale mean (SD) cumulative flux of 55.4
(22)mgN2O\\Nm−2. The emission distributionwas positively skewed,
indicating that the data set was likely affected by hotspots. Because soil
samples were not taken at each individual chamber, OC interpolations
of NO3

−
int and θint at each chamber were extracted to assess their rela-

tionships with cumulative N2O emissions. These data show that
) and soil samples (red diamonds). Results are presented from the N2O ordinary cokriging
on. (For interpretation of the references to color in this figure legend, the reader is referred
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cumulative N2O emissions were significantly (p b 0.01) correlated with
NO3

−
int (r2 = 0.25) and θint (r2 = 0.18) predictions (Fig. 5).

Using a Getis Ord Gi* statistical analysis, locations in this field were
partitioned into three classes based on their emission strength within
the context of neighboring values (Ord and Getis, 2010). These analyses
identified significant clustering of high and low N2O emissions, charac-
teristic of hotspots and coldspots, respectively (Fig. 6). The mean (SD)
flux from hotspots, intermediate, and coldspot locations was 2.5 (0.4)
mg N2O\\N m−2 d−1, 1.3 (0.3) mg N2O\\N m−2 d−1, and 0.8 (0.05)
mg N2O\\N m−2 d−1, respectively. Cumulatively, 3.1 kg N2O\\N,
4.6 kg N2O\\N, and 0.9 kg N2O\\N were emitted from hotspots, inter-
mediate, and coldspot locations, respectively.

These analyses indicate that a disproportionate share of the field-
scale emission budget can be attributed to hotspot locations. Here,
hotspots were responsible for 36% of the cumulative N2O emission bud-
get despite occupying only 21% of the field, while coldspots emitted 11%
of the cumulative budget from a comparable area (18%). The remaining
N2O emissions (53%) were lost from intermediate locations, largely be-
cause 61% of the land surface fell under this emission class. However,
the area of a field that qualifies as a hotspot could fluctuate based on
meteorology — for instance, a particularly wet spring could increase
the surface area of locations that experience prolonged and high mois-
ture exposure. Kruskal-Wallis tests showed that the WPI observed in
hotspot locations was greater than the WPI values typically found in
the other emission classes, in part because these locations had low
slopes and elevation. A Kruskal-Wallis test revealed that hotspots had
statistically different slopes (mean = 1.6%) and elevation (mean =
327.8-m) than intermediate (mean = 3.3%; 331.4-m) or coldspot
(mean = 3.7%; 331.1-m) locations (data not shown).

Consequently, the general locations of hotspots were largely static,
likely because of the strong relation with topographic indices, including
elevation and slope. The positive relations identified here indicate that
topography, via its controls on nutrient and moisture distributions,
can help guide N2O management practices. Towards this end, the dis-
proportionate strength and stability of N2O hotspots indicates that
targeted management of these sources could efficiently reduce total
emissions. For instance, if the average hotspot flux density were re-
duced from 2.5 mgN2O\\Nm−2 d−1 to 1.3 (0.3) mg N2O\\Nm−2 d−1,
1, a magnitude that is more in step with intermediate areas, the mean
field-scale flux density over the entiremeasurement period could be re-
duced by up to 14% (10–18). By reducing the cumulative hotspot emis-
sions to 49 (10.4) mg N2O\\N m−2, the rate observed in intermediate
areas, the field-scale budget could be reduced by as much as 17%
(12−22). The removal of hotspots through nativewetland reclamation
could reduce emissions by as much as 36%. Given the strong radiative
forcing and other side effects of N2O, these findings deserve serious
Fig. 5. The relationship between cumulative N2O emissions and the soil characteristics, NO3
−
in

color in this figure legend, the reader is referred to the web version of this article.)
consideration, especially if the distribution of potential hotspots is sim-
ilarly predictable throughout the U.S. Corn Belt.

From a management perspective, emission hotspots were generally
collocated with NO3

−
int hotspots. Consequently, variable rate nitrogen

application (VRNA), a recent advancement in precision agriculture,
could prove an effective tool to address N2O hotspots. This technology
translates crop reflectance readings into fine-scale fertilizer decisions
and has been shown to increase yield and income while providing
promising N uptake results (Scharf et al., 2011). Better soil N manage-
ment overall will potentially reduce N2O emissions; however, the one-
size-fits-all approach to fertilizer application may be a contributing fac-
tor to hotspots that VRNA can overcome. For instance, because low-
lying areas accumulate surplus NO3

− from upland areas andmay not re-
quire additional N, VRNA can limit over application. Further, easing the
NO3

− surplus in upland areas using fine-scale fertilizer decisions could
help mitigate the effects of terrain focusing. Alternatively, the selective
application of enhanced efficiency N fertilizers (EENFs), which show
promising N2O mitigation results (Halvorson et al., 2014), to hotspots
via VRNA couldminimize their strength. However, extrapolating the ef-
fect EENFs may have on hotspots here becomes difficult since EENF re-
sults are often specific to soil type and climate.

These data also showed that N2O and θint hotspots were collocated,
suggesting that N2O hotspots are most likely to require subsurface
drainage to ensure crop success. If conservation wetlands or VRNA
were capable of reducing NO3

− losses in tile drainage, either by improv-
ing N uptake for target and non-target species (i.e., wetland plants) or
by reduced subsurface drainage overall, indirect emissions downstream
could also be mitigated (Turner et al., 2016b). A reduction of offsite ni-
trate losses, like those from leaching and runoff, would be an important
benefit because these can be disproportionately strong sources of N2O,
especially in the Corn Belt (Chen et al., 2016; Griffis et al., 2013;
Turner et al., 2015). However, little is known about emissions from con-
servation wetlands or the ultimate N2O effect from VRNA.

Since our data set only includes six sample dates, these analysesmay
not include episodic emissions and therefore likely represent a conser-
vative estimate. To resolve this uncertainty, automated soil chambers
are an effective means for taking high frequency measurements
(Baker et al., 2014; Turner et al., 2016a). However, sampling constraints
(e.g., cost, tube length, and on-site power) tether chambers to a central
point, limiting their ability to capture the spatial distribution of emis-
sions observed here. Therefore, the potential for terrain artifacts to
bias measurements must be considered when selecting chamber place-
ment. For instance, past work in this field explored various N2O treat-
ment effects using an automated chamber system (Baker et al., 2014;
Fassbinder et al., 2013). Although, those experiments were situated in
a location that our analyses has classified as an intermediate strength
t and θint. A linear line of best fit is included (red). (For interpretation of the references to



Fig. 6. Results from the Getis Ord Gi* statistic that was used to identify the spatial distribution of hotspots and coldspots. Intermediate locations are transparent.
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emitter, they highlight the risks of automated chamber clusters in
hotspot or coldspot regions.

4. Conclusion

Our data and analyses have shown that LiDAR DEMs and geospatial
techniques can be valuable tools to resolve hotspots and model fine-
scale N2O emissions. Here, hotspots were disproportionately strong
sources, responsible for more than a third of the cumulative emissions.
Because hotspots are reliant on terrain focusing for nutrients and mois-
ture, they are relatively static features. Consequently, their regularity
and predictability should facilitate targeted management practices
that could reduce field-scale emissions by as much as 17%.

(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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