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A B S T R A C T   

Evapotranspiration (ET) prediction and forecasting play a vital role in improving water use in agriculturally 
intensive areas. Metrological and biophysical predictors that drive ET in managed landscapes have complex 
nonlinear relationships. Deep learning and data-driven methods have shown promising performance for iden-
tifying the dependencies among variables. Here, we evaluated the potentials of random forest (RF) and long 
short-term memory (LSTM) neural networks to estimate and forecast daily ET for corn, soybeans, and potatoes in 
diverse agricultural farms during 2003–2019. The modeling framework was applied for nineteen fields where 
eddy covariance ET and meteorological observations in the Midwest USA for growing season (April-October) is 
available. In this study, we applied data-driven models (RF and LSTM) with 3 sets of predictors (5, 11, and 16 
predictors). Results show that a 16 predictor RF model (RF_16 R2 = 0.7, Willmott’s skill score = 0.90) out-
performed a process-based land surface model (LSM R2 = 0.57, Willmott’s skill score = 0.86) for predicting daily 
ET, while LSTM performance was lower (LSTM_16 R2 

= 0.65, Willmott’s skill score = 0.89 and LSTM_11 R2 
=

0.62, Willmott’s skill score = 0.86) than RF using the same sets of predictors. Vapor pressure and crop co-
efficients were identified as the most important predictors for irrigated crops, while short wave radiation and 
enhanced vegetation index were key predictors for non-irrigated crops. For certain crop types, such as corn and 
soybeans on fine-grained soils (silt loam), a simpler version RF, using only 11 drivers, can provide comparable 
results (R2 = 0.70 vs 0.69 and Willmott’s skill score = 0.90 vs 0.88). For short-term 3-day ET forecasting, LSTM is 
more sensitive to uncertainty in ensemble forecast meteorology than RF. ET forecasts were strongly sensitive to 
forecast uncertainty of vapor pressure. The proposed modeling architecture provides a field-scale, locally cali-
brated tool for accurate prediction and short-term forecasting of daily ET in areas where in situ ET, metrological, 
and biophysical data are lacking.   

1. Introduction 

Terrestrial water in the biosphere and atmosphere is linked through 
evapotranspiration (ET) (Donohue et al., 2010; Priestley and Taylor, 
1972; Wei et al., 2017). ET is the second-largest term in the global land 

surface water budget (Barr et al., 2014; Narasimhan and Srinivasan, 
2005; Trenberth et al., 2007; Wang and Dickinson, 2012). In order to 
understand terrestrial ecosystem processes in a changing climate such as 
flash droughts (Kim et al., 2019; Otkin et al., 2016), water resource 
management (e.g., irrigation efficiency), it is important to accurately 

* Corresponding author. 
E-mail address: talib@wisc.edu (A. Talib).   

1 ORCID ID: 0000-0002-5226-6041.  
2 ORCID ID: 0000-0002-1209-9699.  
3 ORCID ID: 0000-0002-2111-5144.  
4 ORCID ID: 0000-0002-8892-1423. 

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2021.126579 
Received 3 January 2021; Received in revised form 3 April 2021; Accepted 14 June 2021   

mailto:talib@wisc.edu
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2021.126579
https://doi.org/10.1016/j.jhydrol.2021.126579
https://doi.org/10.1016/j.jhydrol.2021.126579
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2021.126579&domain=pdf


Journal of Hydrology 600 (2021) 126579

2

estimate and forecast ET (Allen et al., 1998; Anderson et al., 2011; 
Shugart, 1998). Hydrological applications geared towards conservation 
of water resources especially for irrigation require prediction and fore-
casting of ET as a fundamental component. Hence for sustainable agri-
culture, an ET prediction and forecasting tool can be useful for farmers 
and water managers to handle water resource challenges (Djaman et al., 
2020; Moratiel et al., 2020; Payero and Irmak, 2013; Perera et al., 2014). 
Actual ET can be measured directly using eddy covariance (EC) towers 
(Baldocchi et al., 2001; Barr et al., 2012; Wilson et al., 2001) but costs, 
logistics, and measurement scale inhibit regional and long-term studies 
such as EC and Bowen ratio methods (Rosenberry et al., 2007). Further, 
ET needs to be assessed across a range of crop varieties and soil/climate 
types that influence it, requiring many observation sites. Hence there is a 
need for models that are based on more readily available drivers to 
predict and forecast ET for broader applications. 

Data from satellite sensors have been used in earlier studies to esti-
mate ET over domains of different regional scales such as watershed or 
continent (Anderson et al., 2021; Crosbie et al., 2015; Filgueiras et al., 
2020; Fisher et al., 2020; Scott et al., 2008; Yao et al., 2013), though 
satellites are hampered by tradeoff in spatial resolution and revisit fre-
quency, cloud cover, and model assumptions used in linking observa-
tions of surface reflectance or brightness temperatures to ET. In 
addition, data assimilation methods (Meng et al., 2009; Xu et al., 2018; 
Zou et al., 2017) as well as land surface models (Lian et al., 2018; 
Vinukollu et al, 2012) have been used. However, the relative error range 
for ET estimates compared with ground measurements is from 14% to 
44% (Long et al., 2014; Velpuri et al., 2013) due to factors such as spatial 
variation, heterogeneity, model parametrization, and unconstrained 
water balance. In addition, while there are many studies to estimate or 
predict and forecast reference ET in different climatic conditions (e.g., 
Fang et al., 2018; Li et al., 2016; Yang et al., 2006) there are not many 
studies for forecasting actual ET in intensively irrigated and non- 
irrigated areas. 

Field-scale crop models are another avenue for predicting ET. Cur-
rent crop models that are designed to simulate agricultural practices 
such as soil composition, nutrients, tilling practices, and irrigation 
scheduling can be coupled with computational hydrologic and land-
–atmosphere models (Pauwels et al., 2007). The development of these 
physically-based and spatially explicit representation of land surface 
interaction and agricultural processes at the farm scale have high 
computational costs (Chaney et al., 2016; Clark et al., 2017), which 
requires significant parameterization and tuning, subject to collection of 
a myriad of trait and driver datasets. Even though those models accu-
rately simulate hydrological processes, challenges in calibrating these 
biophysically-based models make accurate physical process simulations 
at individual fields challenging. In addition, the available data for cali-
bration and validation of these models, e.g., three-dimensional infor-
mation about sub-surface heterogeneity (such as soil texture, moisture, 
and groundwater flow) limit the application of those models for larger 
areas with intensive agriculture. However, these models are useful for 
small-scale regional studies. 

In addition to process-based hydrological models, empirical models 
based on statistical correlations of potential evapotranspiration with 
meteorological parameters have also been used (Valipour et al., 2017). 
Often, variables like canopy cover is used in these methods to convert 
potential evapotranspiration to actual evapotranspiration. The problem 
with such an approach is that performance may significantly depend on 
the estimate of canopy cover. An alternate approach to existing empir-
ical and physical based methods is to use data-driven methods to esti-
mate actual evapotranspiration. 

A variety of data-driven models have been used in ET simulation 
studies (Deo and Şahin, 2015; Fang et al., 2018; Izadifar and Elshorbagy, 
2010; Pandey et al., 2017). It is efficient to combine information from 
readily available predictors from remote sensing along with ground 
observation by applying machine learning (ML) methods that may be 
able to predict and forecast ET based on relationships between input 

predictors without utilizing field-based physical parameters. ML algo-
rithms extract non-linear relationships hidden in time series or spatial 
data and then apply those patterns to estimate and forecast future sce-
narios. For example, Yang et al. (2006) and Tabari et al. (2012) used a 
support vector machine (SVM) approach to estimate eight-day averaged 
ET and reference ET respectively using ground observation and remote 
sensing predictors. Landeras et al. (2009) used autoregressive models to 
forecast weekly reference ET and Bodesheim et al. (2018) applied a 
regression trees based random forest (RF) approach for ET estimation. 
Without explicit training, RF can manage high dimensional regression 
problems and extract the interaction among model predictors (Auret and 
Aldrich, 2012; te Beest et al., 2017). Shiri (2018) used a coupled 
wavelet-random forest model for estimating reference ET and showed 
the potential of a tree-based model in terms of the accuracy of the 
reference ET model. The use of ensemble trees and randomization makes 
this approach more flexible, simple, robust and avoids overfitting by 
making the best use of limited data and reliable performance on both 
training and test data (Zhang et al., 2017; Chen et al., 2020a, 2020b). 

In addition to ensemble trees algorithms, the artificial neural 
network (ANN) approaches have been used for both reference and actual 
ET prediction (Abdullah et al., 2015; Cobaner, 2011; Feng et al., 2017; 
Ferreira et al., 2019; Jung et al., 2011; Kisi and Alizamir, 2018). Most of 
these ANN approaches such as convoluted neural network (CNN) for ET 
modeling are based on a feed-forward neural network approach where 
the algorithm is introduced for a single layer (Tavares et al., 2015; 
Yassin et al., 2016). However, for time series analysis, one of the 
drawbacks of feed-forward ANNs is that any information about the 
sequence of inputs is lost and data pre-processing for singular spectrum 
analysis of time series in these models require complicated procedures 
(Sahoo et al., 2017). In addition, traditional ANNs also have a problem 
of exploding or vanishing gradient (Rangapuram et al., 2018). Hence a 
special type of neural network architecture, recurrent neural networks 
(RNNs) is designed where input is processed in its sequential order to 
understand temporal dynamics (Carriere et al., 1996). For problems 
such as ET prediction and time series forecasting, for which order of the 
input variables is important, a specific kind of RNN is Long Short-Term 
Memory (LSTM) that can solve the problem of vanishing gradient. Since 
our study focuses on time series prediction and forecasting, RNN such as 
LSTM along with ensemble trees algorithm such as RF is a suitable 
choice. 

In LSTM, connections between units and cells allow data to move in a 
forward and backward direction within the model framework. This 
method helps to overcome the problem of learning lagged dependencies 
found in traditional RNN. In the case of the water cycle, such an 
approach allows the model to preserve previous information for future 
uses such as water storage effects (e.g. snow) or shallow groundwater- 
driven systems. Kao et al. (2020) used an LSTM model to forecast 
floods in inundation-prone areas and found that LSTM can be used to 
link the sequence of rainfall with a sequence of runoff. In addition, 
Kratzert et al. (2019) applied process-based constraints on an LSTM 
modeling framework to simulate runoff for a variety of watersheds and 
found that LSTM outperformed benchmark physically-based coupled 
models. 

As noted above, challenges in existing methods for predicting and 
forecasting actual ET are the need for extensive parametrization, lack of 
relevant data drivers, the computational cost of process-based models, 
and lack of direct estimate of actual ET from empirical models. Knowl-
edge of the performance of data-driven models in different types of 
irrigated and non– irrigated crops under different soil types is still partial 
and fragmented. In addition, models in existing studies have only been 
applied on limited test data sets. Few studies have evaluated the relative 
contributions of the different input datasets (predictors) to the accuracy 
and uncertainty of the actual ET models in agricultural fields, particu-
larly across different management (irrigated vs. rain-fed), crop types, 
and soil textures. 

Here, we ask 1) how well can empirical ML models predict and forecast 
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ET 3 days in advance in irrigated and rain-fed agricultural lands across the 
Midwest US? 2) what are important drivers for predicting and forecasting ET 
3 days in advance in irrigated and non-irrigated areas? We evaluate two 
different ML models, RF and LSTM, with differing numbers of predictors 
(5, 11, 16) across a range of crop and soil texture types where eddy 
covariance observations were available between 2003 and 2019. The 
results of this evaluation allow us to better understand the predictors of 
accuracy and uncertainty in the ET models and propose a multistep 
prediction and forecast agricultural ET model that can be applied to 
locations with limited in situ observations. Since there is no clear un-
derstanding of minimum required predictors for accurate estimates of 
ET, our models with different sets of predictors (5,11, 16) can help to 
understand the need for important or minimum drivers for different crop 
fields on various soil textures in areas with scarce data. 

2. Methods 

In this paper prediction and forecasting models based on RF and 
LSTM framework are proposed. For ET prediction, RF and LSTM model 
with 5, 11, and 16 predictors are proposed. For all model experiments, 
simulations are based on data from 2003 to 2019. 

2.1. Data description 

The proposed model performance was assessed by using the observed 
ET data obtained from the AmeriFlux database or site investigators 
(Table 1) for 19 sites located in the agricultural areas of the US Midwest 
in states of Iowa, Illinois, Michigan, Minnesota, Nebraska, Ohio and 

Wisconsin (Fig. 1). Out of those 19 sites, five are irrigated and 14 are 
rainfed (Table 1). Study sites were all located in a temperate climate 
with cool to cold winters and hot, humid summers. The dominant crops 
in those regions are soybeans, potatoes, and corn with coarse-grained 
(sandy loam, loamy sand, loam) and fine-grained (silt Loam and silt 
clay) soils. The data duration used during this study ranged from 2003 to 
2019 with a daily time step for continuous variables. After removing 
outliers, only months with less than 3 days gap were used and years with 
more than one month of missing data were removed. Data gaps for 
quality-controlled half-hourly ET observations were filled with post- 
processing software REddyProc (Wutzler et al. 2018). REddyProc 
method uses co-variation and temporal autocorrelation of turbulent 
fluxes and gaps are filled based on available information about air 
temperature, incoming solar radiation, and vapor pressure deficient 
based on marginal distribution sampling. Additional meteorological 
data were obtained from Daymet (Thornton et al., 2014) and North 
American Land Data Assimilation System (NLDAS) Land Surface Model 
(LSM) (Xia et al., 2012). In addition, MODIS (Aqua MODIS MYD09GA. 
Aqua MODIS MYD09GA) satellite data (Vermote, 2015) was also used 
for enhanced vegetation index (EVI), albedo, and solar zenith angle. 
Table 1 describes the study site locations, duration of measurements, 
and ancillary information. Summary statistics such as mean, maximum, 
and variance of ET across different observation sites is included in 
Table 2. 

The selection of model input predictors was due to their influence on 
ET and their availability for agricultural sites (Fig. 2). Sixteen model 
predictors used on daily time stamp for model predictions include 
moving average precipitation for 7 days (Prcp7), 15 days (Prcp15), and 

Table 1 
Description of agricultural flux towers study sites located in Midwest USA. Sites names are based on AmeriFlux ID.  

State Site ID Lat. Long. Duration Soil Type Rain-Fed/ 
Irrigated 

Crop types Doi 

IA US-Br1  41.97 − 93.69 2005–2011 Loam Rain-Fed Corn in odd years, Soy in even 
years and 2011 

Prueger and Parkin (2001a) https://doi. 
org/10.17190/AMF/1246038 

IA US-Br3  41.97 − 93.69 2005–2011 Clay Loam Rain-Fed Corn in even years, Soy in odd 
years 

Prueger and Parkin (2001b) https://doi. 
org/10.17190/AMF/1246039 

IL US-IB1  41.86 − 88.22 2006–2017 Silt Loam Rain-Fed Corn in even years and 2013, 2017, 
Soy in odd years and 2014 

Matamala (2005) https://doi.org/10.171 
90/AMF/1246065 

IL US-Bo2  40.01 − 88.29 2004–2007 Silty Clay Rain-Fed Corn in even years, Soy in odd 
years 

Bernacchi (2004–2008) https://doi. 
org/10.17190/AMF/1246037 

IL US-Bo1  40.01 − 88.29 2005–2016 except 
2008–2009 

Silt Loam Rain-Fed Corn in odd years, Soy in even 
years 

Meyers (1996) https://doi.org/10.171 
90/AMF/1246036 

MI US-KL1  42.48 − 85.44 2009–2018 Sandy 
Loam 

Rain-Fed Soy in 2009, Corn in 2010–2018 Chen (2009–2018) https://ameriflux.lbl. 
gov/sites 

MI US-JCK  42.21 − 84.85 2018 Sandy 
Loam 

Rain-Fed Soy Chen (2018a) https://ameriflux.lbl. 
gov/sites 

MI US-KM1  42.44 − 85.33 2014–2018 Sandy 
Loam 

Rain-Fed Corn Chen (2018b) 

MI Jackson 
1  

42.26 − 84.84 2018 Loamy 
Sand 

Irrigated Corn Chen (2018c) 

MN US-Ro1  44.71 − 93.09 2004–2016 Silt Loam Rain-Fed Corn in odd years, Soy in even 
years 

Baker and Griffis (2003-2017a) https:// 
doi.org/10.17190/AMF/1246092 

MN US-Ro2  44.73 − 93.09 2008, 2011, 2012, 
2016 

Silt Loam Rain-Fed Soy in 2012, Corn in 2008, 2011, 
2016 

Baker and Griffis (2003-2017b) https:// 
doi.org/10.17190/AMF/1418683 

MN US-Ro3  44.72 − 93.09 2004–2007 Silt Loam Rain-Fed Corn in odd years, Soy in even 
years 

Baker and Griffis (2003–2010) https:// 
doi.org/10.17190/AMF/1246093 

MN US-Ro5  44.69 − 93.06 2017–2018 Silt Loam Rain-Fed Soy in 2017, Corn in 2018 Baker and Griffis (2017) https://doi. 
org/10.17190/AMF/1419508 

NE US-Ne2  41.16 − 96.47 2003–2013 Silt Loam Irrigated Soy in 2004, 2006 and 2008. Corn 
in other years 

Suyker (2001a) https://doi.org/10.171 
90/AMF/1246085 

NE US-Ne3  41.18 − 96.44 2003–2013 Silt Loam Rain-Fed Corn in odd years, Soy in even 
years 

Suyker (2001b) https://doi.org/10.171 
90/AMF/1246086 

NE US-Ne1  41.17 − 96.48 2003–2012 Silty Clay 
Loam 

Irrigated Corn Suyker (2001c) https://doi.org/10.171 
90/AMF/1246084 

OH US-CRT  41.63 − 83.35 2011–2012 Silt Loam Rain-Fed Soy Chen and Chu (2011–2013) https://doi. 
org/10.17190/AMF/1246156 

WI US-CS1  44.10 − 89.54 2018–2019 Loamy 
Sand 

Irrigated Potatoes Desai (2018–2019) https://doi.org/10.1 
7190/AMF/1617710 

WI US-CS3  44.14 − 89.57 2019 Loamy 
Sand 

Irrigated Potatoes Desai (2019–2020) https://doi.org/10.1 
7190/AMF/1617713  
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30 days (Prcp30), as proxies for soil moisture (because direct soil 
moisture data was not present at all sites), maximum air temperature 
(Tmax), long-wave radiation (LW), incoming short-wave radiation 
(SW), solar zenith angle (SolarZenith), albedo (Albedo), enhanced 
vegetation index (EVI), soil texture (Soil), irrigated versus non irrigated 
proxy (Irr_nonirr), crop cover (Crop_cover), crop coefficient (Crop 
coeff), cumulative growing degree days (CumGDD), wind speed (Wind) 
and vapor pressure (VP). For RF_5 and LSTM_5 daily air temperature 
(Tavg) was used while for RF_11, RF_16 and LSTM_11 and LSTM_16 
maximum air temperature (Tmax) was used. Since RF_5 and LSTM_5 
were based on drivers from Priestley Taylor equation, Tavg was used 
instead of Tmax or Tmin for simpler models. These predictors were 
chosen because of their ability to explain physical processes (Cobaner, 
2011; FAO, 2015; Feng et al, 2017) of ET as well as easy availability in 
most regions. The data source for 16 model predictors along with 
different commination for predictors for various model versions is 
included in Table 1 and Table 3. 

Cumulative growing degree days (CumGDD) are associated with 
different phases of plant development (Cleland et al., 2007) and calcu-
lated for all growing seasons based on the method described in Anandhi 
(2016). Crop coefficients were calculated based on the Food and Agri-
culture Organization of the United Nations (the FAO-56 method) first 
proposed by Allen et al. (1998). FAO-56 method provides both tran-
spiration and evaporation from soil and reference ET is calculated based 
on Penman–Monteith equation. Based on the related version of FAO-56 
method (Allen et al., 1998), adjustments were made according to local 
crop physical condition. 

2.2. Random forest model framework 

RF is an ensemble of different trees where trees are built to explain 
the variability of the output by grouping data in homogenous sets. 
Unique trees are built by data splitting in random sets with replacement 
like bootstrapping as well as by random subsets of predictors, which 

Fig. 1. Study sites and locations for calibration and evaluation data. AmeriFlux site ID were used to identify locations. Thirteen sites were used for training with some 
part of data (2009–2016) for calibration and remaining data (2017–2018) from the same sites for testing. Hence thirteen sites (n = 18481) were used for training and 
seven independent sites (n = 7850) were used in testing model performance. 

Table 2 
Descriptive statistics for agricultural flux towers study sites located in Midwest USA. Mean, standard deviation, sample variance, skewness, minimum and maximum 
daily ET was calculated to show ET variability across sites.  

State Site ID Mean Standard Deviation Sample Variance Skewness Minimum daily ET Maximum daily ET Rain-Fed/Irrigated 

IA US-Br1  2.56  1.64  2.70  0.64  0.00  7.56 Rain-Fed 
IA US-Br3  2.50  1.57  2.46  0.63  0.00  9.27 Rain-Fed 
IL US-IB1  2.54  1.38  1.91  0.63  0.19  8.12 Rain-Fed 
IL US-Bo2  1.96  1.61  2.60  0.64  0.00  8.23 Rain-Fed 
IL US-Bo1  1.60  1.26  1.60  0.93  0.00  6.81 Rain-Fed 
MI US-KL1  2.22  1.13  1.27  0.81  0.11  6.86 Rain-Fed 
MI US-JCK  1.75  0.77  0.60  0.45  0.30  3.85 Rain-Fed 
MI US-KM1  2.15  1.13  1.28  0.81  0.14  7.04 Rain-Fed 
MI Jackson 1  2.10  1.30  1.68  1.93  0.00  7.99 Irrigated 
MN US-Ro1  2.32  1.51  2.29  0.88  0.00  10.51 Rain-Fed 
MN US-Ro2  2.55  1.25  1.57  0.27  0.08  6.97 Rain-Fed 
MN US-Ro3  2.13  1.30  1.69  0.86  0.00  7.19 Rain-Fed 
MN US-Ro5  2.06  1.24  1.54  0.79  0.28  6.64 Rain-Fed 
NE US-Ne2  2.75  1.77  3.13  0.60  0.08  9.52 Irrigated 
NE US-Ne3  2.46  1.62  2.62  0.57  0.09  6.85 Rain-Fed 
NE US-Ne1  2.86  1.85  3.42  0.53  0.00  9.77 Irrigated 
OH US-CRT  2.83  1.60  2.55  0.93  0.51  8.87 Rain-Fed 
WI US-CS1  1.82  1.29  1.66  0.90  0.30  5.70 Irrigated 
WI US-CS3  1.70  1.25  1.63  0.92  0.28  5.30 Irrigated  
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helps to increase diversity among trees (Breiman, 2001). 

{h(x, Ó̈t), t = 1, 2, 3, 4⋯⋯T}

where daily ET (independent variable) is represented by ×, T is the 
number of distinct regression trees and predicted value of regression tree 
in form of ET is represented by h (x, θ t). Hence random forest builds a 
large forest where each tree predicts a value for ET. In this study 
regression, RF of daily ET is affected by different predictors and the 
average of all those values is the final prediction of RF. 

h(x) =
1
T
∑T

t=1
(h(x, Ó̈t) )

Out-of-bag (oob) sampling is used for RF internal validation. In 
addition, the importance of each predictor can be determined by holding 
some predictors constant, while permuting each predictor at a time and 
then comparing the oob error. The paraments that are tuned during RF 
calibration include n_estimator (number of trees in the forest), and 
min_samples_split (minimum number of samples required to split an 
internal node), and min_samples_leaf (minimum number of samples 
required to be at a leaf node). The mean of yearly and monthly observed 
ET, precipitation, and air temperature was computed across various sites 
and then sites were split between training and testing dataset such a way 
that each data set has dry, wet, and average years for representation of 
site conditions. Three RF models RF_16, RF_11, and RF_5 were built with 
16, 11, and 5 predictors respectively (Table 3) with 70% of the data were 

used for training and 30% of the remaining data were used for evalua-
tion/validation based on the hold-out method. 

2.3. Long Short-Term memory network (LSTM) 

LSTM is a special kind of RNN, without the limitation to learn time 
series dependencies between input and output features. One limitation 
of traditional RNN is the inability to “remember” a sequence with long 
lengths (e.g., >10) (Bengio et al., 1994). However, the LSTM framework 
retains memory about the previous timestamp which can help to model 
lags in energy balance fluxes. The information about long-term memory 
for each time step is contained in cell state or cell memory ct of LSTM and 
sequence of inputs (model predictors) as × is presented in the model and 
output (predicted or forecast ET) is obtained as h while six parameters 
show in equations below are updated at each time step in each cell. 

Feed-Farward ANNs such as CNN does not store information in 
memory. We compared LSTM with CNN and chose LSTM algorithm for 
our prediction and forecasting based on performance . All LSTM models 
outperformed CNN models. For example, NSE and Willmott’s skill score 
for LSTM_16 was 0.65 and 0.88 respectively while NSE and Willmott’s 
skill score for CNN_16 was 0.53 and 0.84 (Fig. S1 and Table S1 in Sup-
plementary Materials). 

In LSTM model a sigmoid function is computed by a forget gate (ft) 
on new input xt and previous result ht − 1. The sigmoid function is a 
smooth, differentiable nonlinear function that produces non-binary 
activation where weights can be updated with every data point. The 

Fig. 2. Framework of key steps for proposed daily ET prediction and forecast models. RF_5, LSTM_5 model predictors are in orange color, RF_11, LSTM_11 model 
predictors are in orange and green color, RF_16, LSTM_16 predictors are in orange, green and purple color. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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differentiable activation function is necessary because it can compute 
the gradient which is required for training via backpropagation. In 
addition, it can be derived from a maximum entropy model. The sigmoid 
function helps the forget gate to decide what information needs to be 
remembered and what information can be discarded from memory. The 
sigmoid function is also provided with adjustable weights (W) and biases 
(b) in each LSTM cell. The new information that is going to be remem-
bered is placed in a cell state with the help of the input gate (it), which is 
also calculated by a sigmoid function. A tanh function is used to calcu-
late a new cell state (ct). The output gate regulates the information of the 
state of cell ct using a sigmoid function. 

ft = σ(Wf xt + Uf ht− 1 + bf ) (1)  

ct= tanh(Wcxt +Ucht− 1 + bc (2)  

it = σ(Wixt + Uiht− 1 + bi) (3)  

Ct = fi*ct− 1 + iict (4)  

ot = σ(Woxt + Uoht− 1 + b0) (5)  

ht = tanh(ct)*ot (6)  

where matrices of weights from the input, forget, and output gates to the 
input are denoted by Wi, Wf, and Wo, respectively. The bias vectors for 
input, forget, and output gates are shown by bi, bf, bo, respectively. The 
hidden layer matrix of weights from the input, forget, and output gates 
are represented by Ui, Uf, and Uo, respectively. Logistic sigmoid σ is an 
element-wise non-linear activation function and the element-wise 
multiplication of two vectors is denoted with *. 

In this study, three LSTM models LSTM_16, LSTM_11, LSTM_5 were 
built with 16, 11 and 5 predictors respectively. Here the model with 16 
predictors is assumed to account for more variability than a simple 
model of 5 predictors because it includes predictors related to both 
meteorological and biophysical processes. The model with 5 predictors 
was built to make a model based on inputs from the common physical ET 
model of Priestley-Taylor, while the model with 11 predictors was used 
as an intermediate framework between the complex and simple model. 
Each model had two fully connected layers. The first layer is called the 

encoder layer with 50 neurons and that layer is responsible for reading 
and interpreting the input sequence. Initially, the model was run with 
25, 50, 100, and 200 neurons, and an optimal number of 50 neurons was 
selected for layer 1 based on lower ubRMSE and high erWillmott’s index 
(Fig. S2 in Supplementary Materials). 

In order to combat the problem of overfitting, a regularization 
method of “dropout” was applied after the first layer where the dropout 
value is a percentage between 0 (no dropout) and 1 (no connection) for 
LSTM units (Kratzert et al., 2019). Models were tested using different 
values for dropout and evaluation statistics were calculated to find the 
optimal number of neurons. In addition, training and testing data per-
formance was compared to avoid an overfitting or underfitting problem 
(Fig. S2 in Supplementary Materials). A dropout value of 0.10 was 
applied in LSTM_16, and a dropout value of 0.25 was applied for 
LSTM_11 and LSTM_5 (Table 4). After the dropout function, a decoder 
layer was applied which used the output of the encoder (first layer) as an 
input. A second LSTM layer that comes after the encoder had 25, 50, and 
100 neurons for LSTM_5, 11, and 16 respectively (Table 4). The optimal 
number of neurons was obtained by using different combinations of 
neurons and dropout factors until reduced ubRMSE was obtained 
without overfitting or undefining model. 

Lastly, two dense layers were applied. The model was calibrated 
using ADAM (adaptive moment estimation) optimizer and mean squared 
error loss function. A moderate rate of 0.001 is used for the ADAM 
optimizer for learning. During the calibration process, it was observed 
that a high learning rate of 0.1 missed the optimal point (R2 > 0.6) and a 
smaller learning rate of 10-6 led to a longer convergence time for the 
model (Zhang et al., 2018). 

Randomly selected 70% of raw data were used for calibration and 
30% of the remaining data were used for evaluation using the hold-out 
method. During the training and optimization of the learning algorithm, 
a loss function was used to estimate the error of the current state of the 
model. The purpose of this loss function is to reduce the loss of the next 
evaluation by updating weights (Kratzert et al., 2019). During training 
initial loss function was 0.59, 0.72 and 0.70 for LSTM_16, LSTM_11 and 
LSTM_5 respectively that was reduced to 0.30, 0.51 and 0.60 for 
LSTM_16, LSTM_11 and LSTM_5 respectively by end of training. 

2.4. Land surface model 

We benchmarked our empirical models against output from process- 
based model ET from the North American Land Data Assimilation Sys-
tem (NLDAS) version 2 LSM model (Xia et al., 2012). Daily ET data were 
downloaded from Land Data Assimilation System (LDAS) (https://ldas. 
gsfc.nasa.gov/nldas/). Penman-Monteith equation is used in NLDAS- 
Noah LSM energy balance for latent heat flux here ET is based on 
evaporation, and plant transpiration is driven by soil moisture stress on 
the top layer of the soil profile (Chen et al., 1996). Hence under wet 
conditions, ET is equal to potential evapotranspiration. Richards 
(Richards, 1931) equation is used in this model to simulate soil moisture 
dynamics. Root zone plant transpiration is driven by canopy intercep-
tion and canopy resistance that is parameterized by solar radiation, air 
temperature, vapor pressure, and soil moisture (Koster and Suarez, 

Table 3 
Description of model inputs and predictors used for different versions of models 
are included. Number at end of each model name shows the number of pre-
dictors used to build model. e.g RF_16 is RF model with 16 predictors and 
LSTM_5 is LTM model with five predictors. Data sources are included.  

Model Driver Abbreviation Source 

RF_5 Precipitation Prcp7, Prcp15, 
Prcp30 

Daymet 

RF_11 Vapor pressure VP Daymet 
RF_16 Air Temperature Tmax, Tavg Daymet 
LSTM_5 Long wave 

radiation 
LW NLDAS_Forcing LSM 

LSTM_11 
LSTM_16 

Shortwave 
radiation 

SW NLDAS_Forcing LSM 

RF_11 Wind Speed Wind Rain-Fed 
RF_16 Solar Zenith SolarZenith Aqua MODIS MYD09GA 
LSTM_11 Albedo Albedo Aqua MODIS MYDTBGA 
LSTM_16 Enhanced 

vegetation Index 
EVI Aqua MODIS MYD09GA 

RF_16 
LSTM_16 

Soil types Soil Soil Survey Geographic 
Database (SSURGO) 

Irrigated-non 
irrigated 

Irr_nonirr Ameri flux sites 

Crop Cover Crop_cover Ameri flux sites 
Crop Coefficient Crop coeff Computed as function of 

growing degrees days 
Cumulative 
growing degrees 
days 

CumGDD Computed by empirical 
formula based on 
temperature  

Table 4 
Parameters for different version of RF and LSTM prediction models. For RF 
version, parameters of n_estimators, min_samples_leaf included. LSTM model 
versions are calibrated using layer 1 dropout, layer 2 neurons, and epoch.  

Model n_estimator min_samples_leaf min_samples_split = 8 

RF_5 100 5 8 
RF_11 100 5 8 
RF_16 150 5 6 
Model Layer 1 dropout Layer 2 Neurons Epoch 
LSTM_5 0.25 25 100 
LSTM_11 0.25 50 100 
LSTM_16 0.1 100 65  
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1996). Surface albedo is simulated based on diurnal variations and 
simulated LAI (500 m resolution) varies seasonally as well as spatially 
and the minimum stomatal resistance parameters are based on vegeta-
tion types. In addition, surface runoff is calculated based on the Simple 
Water Balance (SWB) model, and baseflow is represented by gravity 
drainage (Chen and Dudhia, 2001). 

2.5. Significant predictors 

The significance of each predictor variable with respect to its effect 
on the RF model is displayed by predictor importance. The RF model 
algorithm calculates predictor importance internally to account for bias 
in test data (Liaw and Wiener, 2002). In decision trees, the node uses 
predictors to split values of output (ET) and similar values of the output 
(ET) end up in the same set after the split. Predictor importance is 
measured by measuring how much each predictor contributes to 
decreasing the variance. In order words. importance of predictor is 
based on the frequency of its inclusion in the sample by all trees and it is 
a measure of how much removing a predictor decreases accuracy 
(Breiman, 2002; Pedregosa et al., 2011). A decrease in variance from 
each predictor is averaged in a forest and predictors are ranked ac-
cording to this measure. We used the Sklearn algorithm in python 3.7 to 
calculate the importance score for each predictor after training and the 
score is scaled to 1 to calculate the influence of each predictor on ET. 
Therefore, the sum of the importance of all predictors is equal to one, 
and the higher the value associated with a predictor, the more important 
that predictor. The importance of model predictors was calculated for 
both prediction and forecast model versions of RF. 

The LSTM algorithm does not have a built-in variable importance 
selection criterion. So predictors’ importance was measured in terms of 
change in NSE by removing certain predictors and by comparing the 
change in NSE with the NSE obtained from the original LSTM_16 model. 

2.6. Forecast model 

After evaluation of ET prediction, we also proposed a multistep 
forecast model that can forecast ET three days ahead of time using RF 
and LSTM models as described above (Fig. 2). At each daily time step, 
there are three ET forecasts: 1) day 1 ET (tomorrow ET), day 2 ET (ET 
day after tomorrow), day 3 ET (ET three days from today). Forecasts 
were made by integrating the uncertainty of forecast meteorology 
through ensemble simulation. Hence, along with 16 model predictions 
that were used for the prediction model (Table 3), input meteorological 
predictors from re-forecasts from the National Oceanic and Atmospheric 
Administration’s (NOAA’s) National Centers for Environmental Predic-
tion (NCEP) 11-member Global Ensemble Forecast System Reforecast 
version 2 (GEFSRv2) were propagated into each model to make forecasts 
(Hamill et al., 2013). The uncertainty in meteorological forecasts of 
GEFS was quantified by generating ten ensembles of multiple ET fore-
casts, each perturbed from the original observations (or control). RF_16 
and LSTM_16 versions were used for forecasting ET. 

RF_16 prediction model and initial forecasting model runs provided 
us with identification of important variables as described above. We also 
measured the Pearson correlation between predictors and ET to evaluate 
forecast reliability. In addition, for LSTM_16 we did some initial model 
runs with different combinations of predictors and only used those 
predictors that helped to improve the accuracy of the model (using 
ubRMSE, MAE, AIC criteria). Hence based on initial model runs, infor-
mation from the prediction model, and literature review (Fang et al., 
2018), only those meteorological predictors were selected that were the 
main drivers of future ET, i.e., maximum and incoming solar radiation, 
minimum temperature, and precipitation. So for the day 1 ET forecast, 
forecast meteorology for the next day was included in the model. For day 
2 ET, forecast meteorology of days 1 and 2 were included. For day 3 ET, 
forecast meteorology of days 1, 2, and 3 were included. 

2.7. Model evaluations 

There are 19 sites with 14 rain-fed sites, and five irrigated sites, with 
a total of seventeen site-years (growing season April-October) of ob-
servations, or 26,331 daily observations of ET. Thirteen of the 19 sites 
were used for training where for one of the sites 80% of data was used in 
training and the remaining 20% of data from the same site was used in 
testing. These thirteen sites were used for training while seven sites were 
held-out and used exclusively for testing. In total, 70% of observed ET 
data (18,481 daily ET observations), from the 13 different agricultural 
sites for corn, soybeans, and potatoes, was used for calibration, and data 
from the remaining seven agricultural sites were used for evaluation for 
the time period 2003–2019 (7,850 daily ET observations). To test the 
accuracy of the calibrated models, a subset of data was used to deter-
mine the optimal number of trees in RF and hidden neurons and layers in 
LSTM and an optimum or satisfactory point for the calibration without 
overfitting the models for one set of data. 

For statistical analysis, coefficient of determination R2, Pearson 
correlation coefficient, Nash–Sutcliffe (NSE), Willmott’s skill score or 
index of model performance (Willmott, 1981), mean absolute error 
(MAE), unbiased root mean square error (ubRMSE), RMSE-observations 
standard deviation ratio (RSR) (Moriasi et al., 2015), percentage bias 
(Pbias) were used to assess the predictive ability of the proposed RF and 
LSTM models. In addition, Akaike’s Information Criteria (AIC) metric 
was also used to see the effect of penalization of additional drivers to the 
model (Akaike,1970). AIC adds penalty by including additional pre-
dictors in the model that leads to higher error. Hence a more parsimo-
nious model will have lower AIC. 

AIC = − 2ln(L)+ 2k  

where L is the likelihood and k is the number of parameters. Likelihood 
is calculated as the log of mean square error. 

3. Results 

3.1. RF versus LSTM prediction model evaluation 

Fig. 3 illustrated the performance of the two ET prediction algo-
rithms for the test data, which demonstrated the ability of the calibrated 
models to generalize to unseen ET observations (test data) from eddy 
covariance flux towers across multiple crop types. The evaluation sta-
tistics shown in Fig. 3 indicated that there is a good agreement between 
the predicted and observed ET values across corn, soybeans, and po-
tatoes. For RF 16 model, R2 and NSE values for the corn vary from 0.53 
to 0.70 (Willmott’s score 0.85–0.9) in the testing period and for 
LSTM_16 the R2 range was 0.56–0.66 and Willmott’s skill score 
(0.80–0.89). Further, LSTM_16 had less bias for the site with a smaller 
number of observations (potatoes in loamy sand) compared to RF_16 
(Fig. 3). 

The more complex model required a greater number of neurons for 
the LSTM hidden layer. The number of neurons for different versions of 
best-fit LSTM models varies from 25 to 100 (Table 4). For the LSTM_16 
model, using more than two layers and more than 100 neurons did not 
improve the model performance on testing data. The run time for the 
LSTM_16 model and RF_16 model was ten and two minutes, respectively 
on an Intel CORE i7 9750H CPU, windows 10 X64 based processor. 

Both model outputs products closely follow the seasonal growth of 
crops (Fig. 4). During the shoulder months (i.e. September to next May), 
ET is lower, and as percentage canopy cover increased in June-August, 
so did ET. In addition, both observations and models are consistent in 
showing that during dry years (2006, 2010, and 2012), ET is higher than 
compared to wet years (2014–2018) across crop types. For example, in 
the drought of 2012, the ET at US-Ro1 and US-Ro3 was above 6 mm 
day− 1 while it was less than 6 mm day− 1 in the wet summer of 2015. 

The consistency of modeled ET against the ground truth differs based 
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on the regional characteristic and amount of data available for cali-
bration. For example, in sites US-CS1 and US-CS3, RF model predictors 
could well track the dynamics of the water loss caused by an increase in 
canopy cover. However, LSTM_16 had lower Pbias (− 5.7%) but higher 
error (Figs. 3 and 4) than RF_16 (− 24.1% Pbias). In general, RF_16 had a 
higher bias, but lower error compared to LSTM_16 during months when 
irrigation and ET are higher (June, July). We also computed the 
Empirical Cumulative Distribution Function (ECDF) for the evaluation 
period under different soil conditions, soil moisture (variable precipi-
tation under wet, dry years), and crop types. The ECDFs of RF_16 and 
LSTM_16 models match closely with the observations. Compared to 
extreme events, the middle section of ECDFs curves is better represented 
by models. 

3.2. Significant predictors 

The significance of each predictor variable with respect to its effect 
on the RF and LSTM models is displayed by predictor variables’ 
importance. Four predictor variables that explained most of the variance 
in the data include Enhanced vegetation Index (EVI), solar zenith angle, 
incoming SW radiation, and CumGDD. These four predictors combined 
explain 62% of the model variance. Fig. 5 also showed the Pearson 
correlation coefficient between predictors and ET, which is positively 
correlated with VP and EVI. Since most of the Midwest regions are not 
moisture limited and have a humid climate with warm summers, we 
expect to see a high correlation between ET and maximum daily tem-
perature (during the growing season) compared to the correlation be-
tween ET and precipitation (i.e., our soil moisture proxy in the form of 
moving average precipitation). In irrigated fields, NSE was reduced from 
0.7 to 0.52 by removing SW and SolarZenith predictors (Fig. 3S in 

Supplementary materials) in LSTM. In addition, a change in NSE from 
0.6 to 0.47 was observed by removing SW and SolarZenith from rainfed 
or non-irrigated fields. The positive correlation between maximum daily 
temperature can be seen in the ranking of the CumGDD predictor among 
the four most important predictors for RF (Fig. 5). In contrast, despite 
the low direct correlation of soil moisture proxy (seven days average 
precipitation), it is among the five most important predictors for the RF 
model (Fig. 5). Crop coefficient also improved model performance by 
explaining the dynamics of canopies (cover fraction, LAI, greenness). 
Our analysis for RF model showed that VP and crop coefficients were the 
most important predictors for irrigated crops, while short wave radia-
tion and enhanced vegetation index were key predictors for non- 
irrigated crops (Fig. 6). 

3.3. Model performances 

Different versions of the RF and LSTM models (complex versus 
simple models) were also evaluated on a daily timestep in comparison 
with the daily predictions from the mechanistic model – NLDAS-Noah 
(Table 5). Overall, the RF_16 model resulted in an R2 of 0.7 with a 
Pbias of − 4.7% while the RF_11 model had an R2 of 0.7 with Pbias of 
− 5.3% (Table 5). The NLDAS-Noah model had a 0.57 R2 with the lowest 
Pbias of 0.3 (Fig. 7). The lowest Pbias for NLDAS-Noah was most likely a 
result of the averaged ET prediction across a larger geographical area. 
That leads to a wider spread from the mean estimate on the scatter plot 
with a ubRMSE of 1.1 mm/day and a lower R2 of 0.57 for the NLDAS- 
Noah model (Fig. 7). 

Residuals were obtained for each model time step (daily) by sub-
tracting the observed ET from the predicted ET. A negative residual 
value showed that the model underestimates ET while a positive residual 

Fig. 3. Evaluation results of the proposed daily Random Forest (RF_16) and LSTM (LSTM_16) prediction models for various soil texture for flux tower locations in 
Midwest. 16 means model with 16 variables. n = sample size. 
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means that ET is overestimated. The distribution of residuals is the 
largest for the testing period. Based on residuals, the RF_11 produced the 
most accurate results in April and June (with 0.02 and − 0.01 mm re-
siduals, respectively) while the RF_16 was the most accurate model in 
September (Fig. 8). In July and August, the NLDAS-Noah model 

prediction was more accurate compared to other models. This could be 
because mechanistic models such as NLDAS_Noah has constrained ET by 
using soil moisture at different depths. If soil moisture storage is 
significantly variable due to large ET during the mid-growing seasons 
(July-August), the mechanistic model may outperform empirical 

Fig. 4. Time series, scatter plot, and ECDF of modeled and observed ET; Observed = ET from six representative study sites; Data for US-CS1 and USCS3 were 
presented together in one graph. The black dots and dotted line show observed ET and the blue and green dotted line and points purple are indicating, respectively 
RF_16 and LSTM_16 model. RF_16 = random forest model with 16 input variables; LSTM_16 = LSTM model with 16 input variables; ECDF = Empirical Distribution 
Function; R2 = Coefficient of determination; RMSE = Root Mean Square Error; Pbias = Percentage bias. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 5. Pearson Correlation coefficient between prediction model predictors and response (daily ET); Predictors importance for RF_16 model. Values were scaled to 1 
to calculate the influence of each predictor on the response. 
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models. In shoulder months, since ET is lower, the coupling/interactions 
between soil moisture and ET is also lower. Overall models residuals 
were lower for the shoulder months of April, May, September and 
October and were in the range from 0.003 to 0.1 mm (overestimate of 
ET) while in peak warm months of June, July, and August, residuals 
range from − 0.2 to − 0.6 mm (underestimate of ET). 

For the overall evaluation data set, RF_16 outperformed other 
models with the lowest AIC and R2 of 0.7. The performance of the RF_11 

was similar. RF_5 and LSTM_5 were the simplest version RF and LSTM, 
respectively, and produced the highest daily ubRMSE of 0.94–1.20 mm. 
As the model complexity reduced, ubRMSE and AIC error increased for 
both LSTM and RF and overall RF consistently outperformed LSTM. 
Supplementary materials include models results from training data (13 
sites with 18,481 daily ET observations) and testing data (seven sites 
with 7850 daily ET observations) in irrigated and rain-fed fields and 
their comparison with benchmark model (Figs. S4–S7 in Supplementary 

Fig. 6. Predictors importance for irrigated and non-irrigated crops based on RF_16 model. Predictor importance is scaled to one which means that sum of the 
contribution of all predictors is equal to one. Predictors with longer horizontal bars are more important in terms of explaining model variance. 

Table 5 
Model performance evaluation statistics for different versions of prediction models on daily timestamp. Number at end of each model name shows the number of 
predictors used to build model. e.g RF_16 is RF model with 16 predictors and LSTM_5 is LTM model with five predictors.  

Model Evaluation Statistics for prediction 
model 

R2 NSE Willmott skill 
score 

Pearson 
Corr. 

MAE ubRMSE (mm/ 
day) 

RSR (mm/ 
day) 

Pbias 
(%) 

AIC 

RF_16  0.70  0.70  0.90  0.84  0.64  0.75  0.55 − 4.7 0.0 
LSTM_16  0.65  0.65  0.88  0.81  0.72  0.89  0.59 − 1.9 0.34 
NLDAS_Noah  0.57  0.57  0.86  0.76  0.79  1.1  0.65 0.3 Benchmark 
RF_11  0.70  0.70  0.89  0.85  0.66  0.76  0.55 − 5.3 0.04 
LSTM_11  0.63  0.63  0.86  0.82  0.73  0.91  0.60 − 6.0 0.42 
RF_5  0.63  0.63  0.85  0.81  0.73  0.94  0.61 − 5.4 0.46 
LSTM_5  0.53  0.53  0.80  0.75  0.82  1.20  0.69 − 9.3 0.94  

Fig. 7. Scatter plot of evaluation results of RF and NLDAS-Noah prediction models for sample size n = 7850 (30% of whole data). NLDAS-Noah is considered as a 
mechanistic benchmark model that is compared with the overall best model RF_16. 
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Materials). In addition, evaluation metrics for RF_16 (overall best 
model) are calculated for daily ET is each year of testing data in Table S2 
in Supplementary Materials. 

For non-irrigated crops, the predictors that improved RF_16 and 
RF_11 performance were similar and additional predictors such as soil 
texture, crop cover, crop coefficients, and cumulative GDD did not 
significantly improve the model performance of RF_11 and RF_16. 
However, this was not the case for the irrigated crops. Here, ET pre-
diction was improved by including additional information related to 
physical properties of sites (soil types, crop coefficient, cumulative GDD) 
and relative AIC error reduced from 0.16 to zero (Fig. 9), making RF_16 
the best model for irrigated crops. AIC score and R2 were also computed 

for sites with different crops and soil texture. For all crop types, the 
simplest versions of models such as RF_5 and LSTM_5 (Fig. 10, Table 6) 
increased ubRMSE and AIC errors. Soybean and corn on fine-grained 
soils such as silty loams did not show an increase in R2 or decrease in 
ubRMSE and AIC in models by including additional 5 parameters in RF 
16 and LSTM 16 model. However, corn and soybeans on coarser soil 
such as loam showed improved performance with additional informa-
tion about crop planting and harvest dates, cumulative GDD, and crop 
coefficients. 

Fig. 8. Box plots for predicted ET residuals (simulated minus observed) for evaluation results of RF (a) and LSTM (b) prediction models for sample size n = 7850 
(30% of whole data). RF and LSTM models are also compared with NLDAS-Noah. Median and the 25th and 75th percentiles are represented by boxes. The whiskers 
represent one and a half times the interquartile range (or ~ ±2.7σ). Circles show outliers. Figure (c) also shows the mean residual comparison between different 
versions of RF and LSTM models and NLDAS-Noah. 

Fig. 9. AIC scores for different versions of prediction models on evaluation data. n represents the sample size. AIC score is normalized between 0 and 1 for com-
parison. First AIC was calculated for the whole data set (n = 7850) for different versions of prediction models. Then data are divided into irrigated and non-irrigated 
crops and AIC is calculated separately for irrigated and non-irrigated crops because of different sample sizes. 
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3.4. Forecast model results 

The evaluation was performed for the retrospective period of 
2003–2019 (Fig. 11). For both RF and LSTM, the overall ET estimate was 
comparable for day 1, day 2, and day 3 ET forecast. It is observed that as 
lead time increases, uncertainty and error in forecast increases but for 
proposed RF and LSTM models there was only a slight increase in MAE 
from 0.74 to 0.75 mm and from 0.75 to 0.80 mm (Table 7). The MAE for 
June, July, and August was higher, in concordance with higher variance 
on GEFS meteorology ensemble forecast spread (Fig. 11). This bias was 
more evident in LSTM models where ensembles estimates showed a 
wider spread from the mean estimate compared to RF. Overall, the RF 
forecast model produced results with high confidence (small ensemble 
standard deviation) compared to LSTM. RF was also more precise and 
less biased than the LSTM, for example, for day 3 ET forecasting MAE =
0.75 vs. 0.8 and Pbias = − 4.1% vs. − 5.1% (Table 7) . However, overall, 
the difference between the results of the two forecasting models is not 
significant (p value for two-tailed t-test is 0.2). Based on variable 
importance for RF forecast models (Fig. 11), VP and SolarZenith 
explained about 32% and 12% variance in the model. Other important 
model predictors include Crop_coeff, CumGDD, EVI, and SW_Day3. For 
LSTM removing day 2 and day 3 SW radiation reduced model NSE from 
0.56 to 0.49 (Fig. 11) for day 3 ET, indicating significance of meteoro-
logical forecast predictors. 

While the forecasts appear reliable, there are differences in soil type, 
climate conditions, and irrigation. RF and LSTM were consistent in 
prediction on sandy or loamy soils, but underpredicted ET on silty loam 
(Fig. 12). The performance of the daily ET forecast model decreases 
during extreme conditions. Fig. 13 showed that RF outperforms LSTM 
for ET forecast for day 3 for irrigated crops (RF NSE = 0.70 and Will-
mott’s skill score = 0.91 vs LSTM NSE = 0.67 and Willmott’s skill score 
= 0.90, p value 0.0001) and non-irrigated crops (RF NSE = 0.53 and 
Willmot’ skill score of 0.81 versus LSTM NSE = 0.50 and Willmott’s skill 
score of 0.80 for non-irrigated areas p value 0.07). The difference 

between RF and LSTM model performance was significant for irrigated 
sites. 

Models performance was also tested for extreme events such as as 
floods and drought years. Fig. 14 showed that for 2012, a dry year with a 
flash drought, the difference between the model for day 3 ET forecast 
estimate is larger during days (July, August) with high temperatures and 
ET. Similarly, for the year 2017, a wet year, the model for day 3 ET 
forecast overestimated lower values (~1 mm) of ET. These analyses 
indicate that there are an under-estimation and over-estimation of the 
forecasted maximum and minimum values, respectively. 

4. Discussion 

4.1. Model evaluations 

Overall, we found that empirical ML models can accurately and 
precisely predict ET across a range of crop and soil types in the upper 
Midwest USA, with R2 and NSE equal to 0.70 and ubRMSE from 0.75 and 
0.89 mm day− 1 for RF_16 and LSTM_16 respectively. In general, 
different versions of RF models had higher R2 and NSE and lower Pbias 
than the LSTM, except for irrigated potatoes in sandy loam. We suspect 
that this result is because we had data for only two growing seasons for 
irrigated potatoes, thus our results support that while RF can be more 
accurate, LSTM may be more useful when available data for model 
calibration is smaller. In addition, the prominent soil type for sites with 
irrigated potatoes (US-CS1 and US-CS3) is loamy sand, which stimulates 
rapid water movement through coarse grains after precipitation and 
irrigation. RF_16 could capture this pattern properly during months with 
high ET and irrigation during months when ET is higher but not during 
months with moderate or low ET, while LSTM_16 had a larger variance 
than the bias during such extreme events. This indicates that when 
irrigation and ET are higher (June and July), RF_16 had a higher bias, 
but lower error compared to LSTM_16. The high bias for RF_16 for that 
site is likely because of RF’s greater sensitivity to the size of the training 

Fig. 10. AIC scores for different versions of prediction models on evaluation data based on soil types and crop types. n represents the sample size. AIC score is 
normalized between 0 and 1 for comparison to account for different parameter numbers among the models. Lower AIC means the model is more parsimonious than a 
model with higher AIC. 
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sample. The high bias of RF_16 can also be seen in Iowa (corn and 
soybeans rotation, loamy soil), Minnesota (corn, soybean rotation silty 
loam), and Michigan (Corn, Sandy loam). Thus, while RF models 
outperform LSTM for crop ET, they require more training data. Time 
series analysis of observed and predicted ET values (Fig. 4) shows that 
data-driven models are well trained for predicting the daily data. Hence 
errors in reproducing the daily anomalies are smaller when compared to 
the errors in the seasonal cycle because of their relative amplitude. 

For the evaluation period of different versions of RF and LSTM, re-
siduals (simulated-observed) are roughly normally distributed during 
the growing season. However, negative residuals in range of − 0.25 to 
− 0.75 for different versions of models during peak ET months (July, 
Aug) showed an underestimation of ET. This difference may also be due 
to errors in the input data from different sources, or complexities that 
the model cannot explain e.g., more irrigation during the dry year or not 
capturing fluxes through the root zone of fine-grained and coarse- 
grained soils. Our current models do not have irrigation data as a pre-
dictor so including it in future research can be useful. Our work is 
consistent with earlier studies on using ML to estimate water cycle 

elements. For example, Kratzert et al. (2019) used LSTM in an ungauged 
basin (with an aridity index from 0.22 to 5.20) to estimate stream flow 
using static predictors (e.g soil, geology, water content, max LAI) and 
non-static parameters (e.g precipitation, temperature, solar radiation) 
and found that ML models can be useful to predict information by 
extracting complex relationships between diverse data under heteroge-
neous condition. 

4.1.1. Model complexity 
The complexity of an RF tree grows with an increase in the number of 

trees in the forest as well as the number of training samples. Hence a 
simple RF tree with small training samples could not account for vari-
ability in the potatoes ET. In RF we also limit the number of variables to 
split on in each split that can lead to higher bias in each tree especially 
when the sample size is small. 

Among the ML models, we found that the best overall model to be 
RF_16. We also observed that more than 300 decision trees for the RF 
model only improved the accuracy of training data but did not show 
significant improvement in model accuracy on testing data, and instead 

Table 6 
Daily ET prediction Models (RF_16, LSTM_16, RF_11, LSTM_11, RF_5, LSTM_5) performance for different soil types and crops based on R2, ubRMSE and AIC. n = sample 
size.  

Prediction 
Models 

Crop 
Types 

Soil Types Sample Size 
(n) 

R2 NSE Willmott’s skill 
score 

Pearson 
Corr. 

MAE (mm/ 
day) 

ubRMSE (mm/ 
day) 

RSR Pbias 
(%) 

AIC 

RF_16 Soybeans Silt Loam 2450  0.63  0.63  0.87  0.79  0.65  0.76  0.61 − 0.61  0.18 
LSTM_16 Soybeans Silt Loam 2450  0.56  0.56  0.85  0.75  0.73  0.89  0.66 3.5  0.69 
RF_11 Soybeans Silt Loam 2450  0.65  0.65  0.88  0.81  0.65  0.71  0.59 1.36  0.00 
LSTM_11 Soybeans Silt Loam 2450  0.61  0.61  0.85  0.79  0.79  0.80  0.62 0.97  0.09 
RF_5 Soybeans Silt Loam 2450  0.56  0.56  0.85  0.75  0.74  0.89  0.66 2.1  0.97 
LSTM_5 Soybeans Silt Loam 2450  0.48  0.48  0.80  0.69  0.79  1.1  0.72 − 2.3  1.00 
RF_16 Soybeans Loam 856  0.84  0.84  0.95  0.92  0.51  0.43  0.4 − 0.6  0.00 
LSTM_16 Soybeans Loam 856  0.75  0.75  0.91  0.87  0.65  0.68  0.5 2.0  0.53 
RF_11 Soybeans Loam 856  0.80  0.80  0.93  0.92  0.56  0.53  0.45 − 4.6  0.25 
LSTM_11 Soybeans Loam 856  0.72  0.72  0.90  0.88  0.67  0.73  0.53 − 5.6  0.62 
RF_5 Soybeans Loam 856  0.71  0.71  0.89  0.88  0.67  0.76  0.53 − 4.9  0.64 
LSTM_5 Soybeans Loam 856  0.61  0.61  0.85  0.80  0.80  1.0  0.63 − 7.8  1.00 
RF_16 Potatoes Loamy 

Sand 
224  0.53  0.53  0.85  0.80  0.72  0.67  0.69 24  0.25 

LSTM_16 Potatoes Loamy 
Sand 

224  0.56  0.56  0.80  0.80  0.69  0.74  0.66 − 5.7  0.15 

RF_11 Potatoes Loamy 
Sand 

224  0.58  0.58  0.84  0.79  0.70  0.68  0.65 13.1  0.00 

LSTM_11 Potatoes Loamy 
Sand 

224  0.50  0.50  0.80  0.69  0.74  0.89  0.73 1.83  0.37 

RF_5 Potatoes Loamy 
Sand 

224  0.42  0.42  0.7  0.65  0.77  0.99  0.76 1.45  0.44 

LSTM_5 Potatoes Loamy 
Sand 

224  0.42  0.42  0.75  0.65  0.77  0.99  0.76 1.45  1.00 

RF_16 Corn Silt Loam 3271  0.70  0.70  0.90  0.85  0.68  0.86  0.56 − 9.6  0.51 
LSTM_16 Corn Silt Loam 3271  0.66  0.66  0.88  0.82  0.78  1.0  0.59 − 6.6  0.85 
RF_11 Corn Silt Loam 3271  0.69  0.69  0.88  0.96  0.70  0.88  0.56 − 10.7  0.00 
LSTM_11 Corn Silt Loam 3271  0.62  0.62  0.85  0.83  0.78  1.1  0.62 − 12  0.10 
RF_5 Corn Silt Loam 3271  0.63  0.63  0.86  0.84  0.76  1.0  0.61 − 10.4  0.92 
LSTM_5 Corn Silt Loam 3271  0.53  0.53  0.8  0.79  0.87  1.3  0.68 − 15  1.00 
RF_16 Corn Sandy 

Loam 
428  0.66  0.66  0.88  0.82  0.51  0.45  0.58 − 5.1  0.47 

LSTM_16 Corn Sandy 
Loam 

428  0.66  0.66  0.88  0.82  0.53  0.45  0.58 − 2.8  0.44 

RF_11 Corn Sandy 
Loam 

428  0.7  0.7  0.9  0.84  0.49  0.41  0.55 2.9  0.00 

LSTM_11 Corn Sandy 
Loam 

428  0.64  0.64  0.88  0.81  0.53  0.47  0.60 5.3  0.53 

RF_5 Corn Sandy 
Loam 

428  0.63  0.63  0.87  0.80  0.54  0.50  0.61 1.6  0.59 

LSTM_5 Corn Sandy 
Loam 

428  0.58  0.58  0.85  0.76  0.59  0.57  0.65 − 0.42  1.00 

RF_16 Corn Loam 621  0.76  0.76  0.92  0.88  0.61  0.65  0.49 − 5.1  0.00 
LSTM_16 Corn Loam 621  0.68  0.68  0.89  0.83  0.75  0.87  0.56 1.4  0.43 
RF_11 Corn Loam 621  0.71  0.71  0.89  0.88  0.66  0.75  0.54 − 9.8  0.25 
LSTM_11 Corn Loam 621  0.65  0.65  0.86  0.84  0.75  0.92  0.59 − 7.3  0.53 
RF_5 Corn Loam 621  0.63  0.63  0.85  0.85  0.75  0.97  0.61 − 10.3  0.60 
LSTM_5 Corn Loam 621  0.52  0.52  0.79  0.77  0.87  1.3  0.69 − 11  1.00  
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only made the proposed approach computationally more intensive. The 
performance of the RF_16 model is comparable to the process-based 
NLDAS-Noah model and needs relatively fewer parameters and drivers 
to estimate ET. The inner structure of RF allows the model to explain the 
non-linear relationships among ET and important predictors such as EVI, 
solar zenith angle and incoming SW radiation. RF_16 models out-
performed other smaller parameter number models for most of the lo-
cations except at corn and soybeans with silt loam soil texture and 
potatoes in sandy soils. At those locations, we found that a simple 
version of RF (RF_11) performed better at those locations as well as for 
non-irrigated crops. For these sites, the complex models (with 16 pre-
dictors) were overfitting on training data. In other words, for these crop 
and soil combinations, an overall simpler model was able to learn the 

appropriate non-linear relationship and memory (in the case of LSTM) 
between predictors and memory. Hence, we can expect the performance 
of LSTM and RF to decline when models are trained on drivers beyond 
the leading predictors of a hydrologic system. Tennant et al. (2020) 
observed this decline in performance in the LSTM discharge prediction 
model in snow-dominated catchment when trained on additional 
predictors. 

Another reason for the divergence in model performance among sites 
may be related to the observation that irrigated crops have high vari-
ability in ET e.g. based on summary statistics in Table 2, irrigated crops 
in US-Ne2 have maximum daily ET at a higher end (e.g., ~9 mm day− 1) 
with sample variance more than 3 mm compared to non-irrigated crops. 
Although, we did not observe this high variability in irrigated potatoes 

Fig. 11. RF and LSTM comparison for day1,2,3 ET forecast on evaluation data. ET values are averaged by month for visualization of ensemble spread for each month. 
Evaluation statistics are calculated on daily ET forecast estimate. Graphs on the right column show RF models and the graph in the middle column shows LSTM 
models. Variable importance is shown for day 3 ET forecast in the graph on the right column for RF and LSTM. The effect of only important variable removal on NSE 
was shown for the LSTM model, while the importance of all predictors is shown for the RF forecast model. 

Table 7 
Comparison of RF and LSTM model for day1, day2 and day 3 ET forecast. Models are evaluated on 7733 daily ET observations (2003–2019) from seven sites in 
Midwest. Model evaluation statistics are calculated on daily timestep.  

Model Evaluation Statistics for prediction model R2 NSE Willmott’s skill score Pearson Corr. MAE ubRMSE (mm/day) RSR Pbias (%) 

RF_day 1  0.61  0.61  0.86  0.78  0.75  0.99  0.63 − 3.8 
RF_day 2  0.60  0.60  0.86  0.78  0.75  0.99  0.63 − 4.0 
RF_day 3  0.60  0.60  0.86  0.78  0.75  1.01  0.63 − 4.1 
LSTM_day 1  0.57  0.57  0.84  0.76  0.79  1.1  0.65 − 4.4 
LSTM_day 2  0.57  0.57  0.84  0.76  0.79  1.1  0.65 − 4.1 
LSTM_day 3  0.56  0.56  0.84  0.76  0.80  1.1  0.66 − 5.1  
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in US-CS1 and US-CS3 and irrigated corn in MI sites (US-JCK, Jackson 
1), because available data were only from wet years of 2018 and 2019. 
In addition, when water is sufficient or close to sufficient, the impor-
tance of additional predictors such as storage capacity (soil texture) and 
crop phenology (crop coefficients) become stronger and have a critical 
role in predicting ET. However, this effect is masked when irrigation is 
not available, or soil water storage is relatively low in non-irrigated 
crops (Seneviratne et al., 2010). 

When predictors were reduced to only 5, both RF and LSTM per-
formance contained large errors, limiting their utility. This outcome 
showed the importance of wind speed, solar zenith angle, maximum 

temperature, albedo, and 30 days average precipitation (as soil moisture 
proxy) that were excluded in the RF_5 and LSTM_5. Oliveira et al. (2018) 
also noted that surface energy fluxes that drive ET depend on rainfall 
and soil moisture, and albedo’s influence on net radiation estimates. 
Thus, we argue that our 11-parameter model is the baseline minimum 
inputs required to predict ET across a range of crop, soil, and irrigation 
types. This also suggests that a number of predictors lower than 11 could 
not explain the variance in ET and it is possible for some sites to build 
more robust models with 11 predictors instead of 16. However, it’s 
worth noting that the improvement of performance in LSTM and RF is 
not just from more parameters, but also the more complex models 

Fig. 12. Day 3 ET forecast for corn, soybeans, and potatoes under different soil textures for evaluation RF and LSTM. Different colors show the combination of crop 
types with soil textures. 

Fig. 13. Comparison of R2, MAE and Pbias for day 3 ET forecast results. Both RF and LSTM models were tested in irrigated and non-irrigation crops. n represents the 
sample size of evaluation data. 
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include a greater number of hidden neurons, in the case of LSTM, or 
decision trees subsets and nodes in the case of RF. The additional ele-
ments provide an additional benefit over easily implementable 
regression-based models that cannot account for the non-linear in-
teractions among the predictors (e.g. temperature) and ET. For example, 
Chen et al. (2020a) found that temperature and humidity-based ML 
models (RF and LSTM) outperformed temperature and humidity based 
empirical models in areas with limited meteorological data. 

Compared to other techniques for ET estimation, the advantage of 
the proposed ML modeling approach is that these models monitor ET by 
using fewer parameters and do not rely on the accurate parameterization 
of mechanistic models or collections of labor-intensive field-scale data 
(e.g. field-scale leaf area index). However, care must be taken in 
appropriate model selection because the models are location-dependent 
and require sufficient calibration and testing data. For example, for 
soybeans and corn in silt loam, corn with sandy loam soil texture, and 
potatoes with loamy and sandy texture a comparable level of ET pre-
diction performance can be achieved without using additional param-
eters about crop coefficients, crop cover, or CumGDD. Hence, ET can be 
predicted by the readily available biophysical predictors for such loca-
tions, in contrast to ET prediction for corn and soybeans with loam soil 
texture, where model performance is improved by including those bio-
physical parameters. The importance of cumGDD in daily ET prediction 
is encouraging as it is readily derived from low-frequency temperature 
observations and more readily available across more sites than soil 
moisture. 

We found good performance using the same crop coefficients for 
irrigated and non-irrigated crops. Depending upon the objective and 
availability of data for a study, different models can be built for a specific 
crop type and soil texture at a daily time step. 

4.2. Significant predictors 

The predictors importance of the RF model (Fig. 5) highlights driving 

predictors and combats with the black-box nature of some ML models. 
Our study showed that EVI, solar zenith angle, incoming SW radiation, 
and cumulative growing degree days are important predictors to predict 
daily ET for the growing season (April-October) in the Midwest. Simi-
larly, studies based on empirical models (Priestley and Taylor, 1972; 
Jensen et al., 1990) and data-driven ML framework (Chen et al., 2020a) 
evaluated that most of the variation in reference ET can be explained by 
solar radiation. This result is consistent with our study where incoming 
solar radiation explaind about 10%-20% variance for irrigated and non- 
irrigated crops. However, in our study, an additional variation of about 
20% was explained by other variables such as EVI and crop coefficient. 
Zhao et al. (2018) also found that crop coefficients not only correlate 
with canopy development but also controls seasonal ET partitioning and 
surface soil moisture. This shows the importance of variable crop co-
efficients and EVI in predicting ET. 

Noting that LSTM_5 and RF_5 residuals were high especially during 
peak ET months models suggests that wind speed, albedo, and EVI are 
leading factors that promote enhanced ET. For example, the potential of 
plants to extract water from soil depth varies during different stages of 
crop growth, so we can surmise through the lower residuals that it was 
captured by 11 and 16 predictors model versions. EVI has been used for 
agricultural drought monitoring (Song and Ma, 2011) and the results of 
this study also suggest the potential of EVI and ET as good indicators of 
short-term and long-term drought. 

Our work is consistent with earlier studies to estimate ET. For 
example, Cobaner (2011) used fuzzy inference system-based grid 
partition to estimate reference ET in the moderate Mediterranean 
climate of California and found that solar radiation, air temperature, and 
relative humidity as important drivers for ET prediction. Our model was 
built to estimate daily actual ET for agricultural lands and found that EVI 
(non-irrigated crops), crop coefficients, and VP (irrigated crops) to be 
better predictors than solar radiation in Midwest humid-temperate 
climate. 

Feng et al. (2017) used temperature-based RF and generalized 

Fig. 14. RF and LSTM model Day 3 ET forecast performance on evaluation data for a dry year (2012) with flash drought and wet year (2017). Graphs on the top and 
bottom right show the performance of RF and LSTM models for forecasting day1, day 2, and day 3 ET in 2012 (US-Ne2) and 2017 (US-KM1). Graphs in the middle 
show comparison based on daily data for growing season and graphs on left shows average monthly ET. 
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regression neural networks (GRNN) to estimate reference ET and found 
that RF outperformed GRNN. They also noted that without using solar 
radiation temperature-based RF and GRNN underestimated reference 
ET. Our model also found that incoming SW radiation was a more 
important driver than Tmax for actual ET. Walls et al. (2020) used RNN 
model based on ReLU and sigmoid activation function to estimate actual 
ET and found that without net radiation, model performance goes down. 
In our study, we found incoming SW radiation explained higher variance 
for ET compared to LW radiation, and thus net radiation could be 
omitted. In terms of RF and LSTM comparison for other hydrological 
variables, such as snowfall retrievals from microwave humidity 
sounders, Adhikari et al. (2020) found that RF is more robust than LSTM. 

Chen et al. (2020b), which developed an LSTM based actual ET 
prediction model irrigated maize/corn, found that leaf area index, 
relative humidity, and solar radiation as important features that drive 
corn dynamics in a continental monsoon climate. Those predictors are in 
agreement with physical processes that can affect corn ET. We also 
found that VP and crop coefficients were more important predictors for 
irrigated crops compared to non-irrigated, while incoming SW radiation 
explained more variation in non-irrigated compared to irrigated crops. 
Irrigation influences surface temperature, convection, cloud formation 
(Lohar and Pal 1995), and humidity (Jianping et al. 2002). In irrigated 
crops, additional water vapor (Boucher et al., 2004) in the atmosphere 
due to evaporation of irrigated water can explain why vapor pressure is 
an important driver for irrigated crops, while less surface cooling in non- 
irrigated land can make incoming SW radiation important driver for 
those sites. 

Since our study had shown that EVI is the most important variable for 
rain-fed crops, the uncertainty of EVI and associated parameters used in 
other models (e.g. for deriving leaf area index, LAI) will greatly affect ET 
estimation/mapping across the globe and improvement in estimating 
LAI can improve hydrologic and land surface models for ET mapping. 
Thus, methods to reduce uncertainty in EVI can improve remote sensing 
estimate of ET (Sharma et al., 2016). 

We also found that soil texture is important in improving ET esti-
mation in irrigated fields, which suggests the use of soil texture maps for 
ET estimation in ET mechanistic models in addition to soil moisture as a 
limiting factor. Dong et al. (2020) showed that soil moisture and ET 
coupling strength bias is caused by oversimplification of soil texture 
effects on soil evaporation stress. A data-driven based hydrodynamic 
prediction model can benefit from data sets of appropriate temporal and 
spatial coverage, readily available meteorological, biophysical vari-
ables, and advanced RNN such as LSTM (Kratzert et al., 2019) as well as 
robust simple ensemble tree-based RF algorithms. 

4.3. Forecast models evaluations 

We found that RF and LSTM framework can be used for forecasting 
for three days in advance using gridded forecast meteorology. Based on 
our hindcast analysis, the RF forecast model provided higher accuracy 
overall than LSTM, consistent with prediction model evaluation. LSTM 
forecast model was more sensitive to GEFS meteorology ensembles, 
where a higher spread from mean forecast ET was observed compared to 
the RF forecast model and RF can handle multivariate dimensionality 
(Belgiu and Drăguţ, 2016) better than RNN. 

ML-based actual ET forecasts are a novel contribution of our research 
here and demonstrate significant performance across multiple irrigated 
and non-irrigated crops and soil texture. Short-term ET forecasts have 
value for irrigation planning considering under-irrigation and over- 
irrigation can be detrimental for crops and local water supply quantity 
and quality. We find that vapor pressure, solar zenith angle, and third- 
day forecasted incoming SW radiation are important predictors for ac-
curate and precise ET forecasts. Ferreira and da Cunha (2020) used 
similar meteorological predictors (maximum air, solar radiation) for 
multistep forecasting of reference ET and found that deep learning 
models such as LSTM performed better than classic machine learning 

models. This is because LSTM process input in its sequential order and 
overcomes the problem of learning lagged dependencies. In addition, 
connections between neurons, that allow data to move in forward and 
backward direction within the modeling framework of LSTM and helps 
to learn temporal dependencies. Perera et al. (2014) used numeric 
prediction output for reference ET forecast in Australia and found that 
forecasting based on air and dew point temperatures leads to better 
performance for all lead times compared to incoming SW radiation and 
attributed the poor performance of incoming SW radiation to error 
forecast weather meteorology. Our study found incoming SW radiation 
(forecast) a more important predictor compared to day air temperature 
for actual ET forecast at all lead time. Higher ET during dry seasons 
showed that water was not limited due to irrigation. 

Yin et al. (2020) applied bi-directional LSTM (Bi-LSTM) to forecast 
short term reference ET (one day lead time) in areas with limited 
meteorological data by using inputs of maximum, minimum tempera-
ture, sunshine duration and observed that sunshine duration has a 
higher correlation with reference ET than solar radiation. Hence 
including the sunshine duration in the forecast model can improve 
model accuracy. This study was also able to the ability of Bi-LSTM to 
represents the temporal variability of reference ET over the year. 

For our study, in terms of accuracy, the forecast showed a greater 
skill for irrigated crops compared to non-irrigated crops. We also found 
higher accuracy for coarse-grained soils (sandy loam, loam). Results 
suggest that developed forecasting models are promising for simulating 
ET in the growing season, but the methods need to be improved for fine- 
textured and non-irrigated conditions. The performance of ET fore-
casting can be improved by selecting appropriate meteorological pa-
rameters as the input features of the model. At the same time, ET had 
strong regional characteristics such as different accuracy for different 
soil types. Future work will involve testing how such forecasts could be 
directly implemented for irrigation management and what changes can 
be made to reduce model bias. 

4.4. Limitations and future directions 

ML models such as RF and LSTM models show better generalization 
than linear models and can perform well in space and time compared to 
one-layer ANNs or autoregressive models (Fang et al., 2017). While ML 
models are useful for ET modeling, they have limits. For example, the 
models here are locally calibrated. While the calibration was pooled 
across multiple crop and soil types, it is possible that some combinations 
of crops and soils were not well trained and could lead to inaccurate 
prediction of ET at those locations. Significant training data is a limi-
tation to the ML models. Long-term climatic data can help data-driven 
models to extract the climatic cycle influence on ET. Hence models 
developed on those domains with long-term flux tower locations would 
be more reliable to predict ET and less sensitive to uncertainty than 
those regions with shorter-term and fewer ET data. In cases with limited 
training data, mechanistic models do have an indisputable advantage of 
estimating hydrological variables for any set of inputs as long as the 
limitations and assumptions of the model are valid. 

In terms of parameters, one limitation of our proposed model is the 
lack of root zone water dynamics. For example, when soils have enough 
water stored in them during the wet year, actual ET under non-irrigated 
conditions is assumed to be equal to the potential crop ET. However, 
during dry conditions, limited soil water storage is often observed, 
which can reduce actual ET, and plant ET is more a function of soil 
moisture. We also observed that soil moisture proxy predictors (in form 
of prcp 7 and prcp 30) were of particular importance for non-irrigated 
crops. This could be because spells of heat waves during dry years (e. 
g., 2012, 2010) can lead to a more rapid decline in soil moisture in non- 
irrigated sites compared to irrigated sites. ML models also tend to 
perform poorly on extrapolation to conditions not observed in the data 
or during extreme or rare events. We saw these results in Fig. 14 for 
extreme events in a dry year (2012) and a wet year (2017). The tendency 
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of all ML models to “regress to the mean” limits their usefulness in flash 
drought or flooding type conditions that may become more prevalent 
with ongoing anthropogenic climate change. In addition, Gupta et al. 
(2009) also found that this result is more expected when using MSE as a 
calibration objective function. 

The future application of LSTM and RF models will be catalyzed with 
the availability of more data under more conditions. There is also 
promising research in improving the representation of processes within 
ML, using reinforcement learning or physical constraint type approaches 
(Zhao et al., 2019a, 2019b). For example, it is possible to add physical 
properties to account for subsurface dynamics by including an addi-
tional input layer of tree nodes. Even though the proposed model does 
not have a representation of water balance, it is possible to link neurons 
and trees to atmospheric and hydrological patterns, such as heat fluxes, 
so that water is conserved and allowing for less realistic ET estimates to 
be rejected. However, this might come at a cost of requiring more input 
predictors that must be derived from data products that may or may not 
be available. It is also possible to physically constraint ML models 
(O’Gorman and Dwyer, 2018; Zaherpour et al., 2019; Zhao et al., 
2019b), which can help to conserve energy budget while accounting for 
physical transport processes of water vapor, leading to a better gener-
alization of physical processes during extremes. Camporeale (2019) also 
underscores the need to do more research into probabilistic-based un-
certainty estimates and the development of gray box models by 
combining mechanistic and ML approaches. 

It will also be useful to collect more data from other climate regimes, 
crops, and soil types that can help us understand if the conclusions found 
here and related papers can be generalized to other regions and other 
crops. This can be used to study the scale- and location- dependence of 
the drivers on ET and help improve ET forecasting in regional scales. 

5. Conclusion 

We proposed a new framework based on a machine learning data- 
driven network to estimate and forecast ET and its uncertainty for 
corn, soybeans, and potatoes under different soil texture types in agri-
cultural areas of the Midwest, USA. The model was built by using bio-
physical and meteorological information acquired from ground 
observations and satellite sensor data. The data sets used in the proposed 
model have been widely utilized in many studies for ET prediction and 
related to ancillary data used in hydrological models such as SWAT and 
HSPF. The proposed model was calibrated using 13 field-based eddy 
covariance ET time series distributed across the region for the period of 
2003–2019 for irrigated and rainfed agricultural areas in the Midwest. 
The model was evaluated in seven independent locations for the time 
period of 2003–2019. 

The evaluation results based on observed ET measurements collected 
from seven different sites confirmed that the predicted models can be 
used for daily ET estimates with ubRMSE from 0.67 to 0.92 mm, Will-
mott’s skill score from 0.80 to 0.90 and simulate the spatial heteroge-
neity of agricultural parameters and dynamics of water use by crops. The 
prediction model estimates were reliable and on par with mechanistic 
model estimates from NLDAS. The results of this study also revealed that 
the inclusion of EVI, solar zenith angle, incoming SW radiation, and 
CumGDD were the most important input predictors. Vapor pressure was 
of greater importance for forecasting future ET. The proposed model can 
also be applied to both rainfed and irrigated crop types. Overall, our 
work supports the use of ML, especially random forest approaches for 
prediction and short-term forecasting of ET in both rainfed and irrigated 
crops, which had a range of valuable uses for irrigation management and 
water cycling evaluation. Expanding this work outward to tropical or 
semi-arid regions may require further evaluation of additional pre-
dictors, but overall, the results here find that a general field-scale 
regional ET model is realizable across a range of soil characteristics 
and climatic patterns. ET prediction and forecasting by using this 
modeling framework can help policy makers to allocate water 

sustainability for irrigation and assist growers to spot water stress areas 
in farms. 
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Yang, Yuting, Zhang, Yongqiang, Wang, Tao, 2018. Partitioning global land 
evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. 
Change. 8 (7), 640–646. https://doi.org/10.1038/s41558-018-0207-9. 

Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News. 
Lohar, D., Pal, B., 1995. The effect of irrigation on premonsoon season precipitation over 

south West Bengal, India. J. Clim. https://doi.org/10.1175/1520-0442(1995) 
008<2567:TEOIOP>2.0.CO;2. 

Long, Di, Longuevergne, Laurent, Scanlon, Bridget R., 2014. Uncertainty in 
evapotranspiration from land surface modeling, remote sensing, and GRACE 
satellites. Water Resour. Res. 50 (2), 1131–1151. https://doi.org/10.1002/ 
2013WR014581. 

Meng, C.L., Li, Z.-L., Zhan, X., Shi, J.C., Liu, C.Y., 2009. Land surface temperature data 
assimilation and its impact on evapotranspiration estimates from the common land 
model. Water Resour. Res. 45 (2) https://doi.org/10.1029/2008WR006971. 

Moratiel, R., Bravo, R., Saa, A., Tarquis, A.M., Almorox, J., 2020. Estimation of 
evapotranspiration by the Food and Agricultural Organization of the United Nations 
(FAO) Penman-Monteith temperature (PMT) and Hargreaves-Samani (HS) models 
under temporal and spatial criteria - a case study in Duero basin (Spain). Nat. 
Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-20-859-2020. 

Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and water quality 
models: Performance measures and evaluation criteria. Trans. ASABE. https://doi. 
org/10.13031/trans.58.10715. 

Narasimhan, B., Srinivasan, R., 2005. Development and evaluation of Soil Moisture 
Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural 
drought monitoring, in: Agricultural and Forest Meteorology. https://doi.org/ 
10.1016/j.agrformet.2005.07.012. 

O’Gorman, Paul A., Dwyer, John G., 2018. Using machine learning to parameterize moist 
convection: potential for modeling of climate, climate change, and extreme events. 
J. Adv. Model. Earth Syst. 10 (10), 2548–2563. https://doi.org/10.1029/ 
2018MS001351. 

Otkin, Jason A., Anderson, Martha C., Hain, Christopher, Svoboda, Mark, 
Johnson, David, Mueller, Richard, Tadesse, Tsegaye, Wardlow, Brian, 
Brown, Jesslyn, 2016. Assessing the evolution of soil moisture and vegetation 
conditions during the 2012 United States flash drought. Agric. For. Meteorol. 218- 
219, 230–242. https://doi.org/10.1016/j.agrformet.2015.12.065. 

Pandey, P.K., Nyori, Topi, Pandey, Vanita, 2017. Estimation of reference 
evapotranspiration using data driven techniques under limited data conditions. 
Earth Syst. Environ. 3 (4), 1449–1461. https://doi.org/10.1007/s40808-017-0367-z. 

Pauwels, Valentijn R.N., Verhoest, Niko E.C., De Lannoy, Gabriëlle J.M., 
Guissard, Vincent, Lucau, Cozmin, Defourny, Pierre, 2007. Optimization of a 
coupled hydrology-crop growth model through the assimilation of observed soil 
moisture and leaf area index values using an ensemble Kalman filter. Water Resour. 
Res. 43 (4) https://doi.org/10.1029/2006WR004942. 
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