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A B S T R A C T   

Tropical peatlands are one of the largest natural sources of atmospheric methane (CH4) and play a significant role 
in regional and global carbon budgets. However, large uncertainties persist regarding their feedbacks to climate 
variations. The Energy Exascale Earth System Model (E3SM) Land Model (ELM) is an ongoing state-of-the-science 
model, which has developed new representations of soil hydrology and biogeochemistry and includes a new 
microbial-functional-group-based CH4 module. This model has been tested in boreal forest peatlands, but has not 
yet been evaluated for simulating energy and carbon exchange for tropical peatlands. Here, we evaluated the 
ELM performance in simulating energy, carbon dioxide (CO2) and CH4 fluxes of an Amazonian palm swamp 
peatland in Iquitos, Peru. ELM simulations using default parameter values resulted in poor performance of 
seasonal carbon dynamics. Several algorithms were improved according to site-specific characteristics and key 
parameters were optimized using an objective surrogate-assisted Bayesian approach. The modified algorithms 
included the soil water retention curve, a water coverage scalar function for CH4 processes, and a seasonally 
varying leaf carbon-to-nitrogen ratio function. The revised tropics-specific model better simulated the diel and 
seasonal patterns of energy and carbon fluxes of the palm swamp peatland. Global sensitivity analyses indicated 
that the strong controls on energy and carbon fluxes were mainly attributed to the parameters associated with 
vegetation activities, such as plant carbon distribution, stomatal regulation, photosynthetic capacity, and leaf 
phenology. Parameter relative importance depended on biogeochemical processes and shifted significantly be
tween wet and dry seasons. This modeling study advanced the understanding of biotic controls on the energy and 
carbon exchange in Amazonian palm swamp peatlands and identified knowledge gaps that need to be addressed 
for better prediction of carbon cycle processes and budgets for tropical peatlands.   
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1. Introduction 

Natural tropical peatlands are an important global carbon sink 
accumulating large amounts of carbon in soils over centuries. Concur
rently, they are also large methane (CH4) sources. Based on tropical 
peatland distribution (Gumbricht et al., 2017) and a multi-model esti
mate of peatland emissions (Melton et al., 2013), tropical peatlands 
could account for about 25% of global peatland CH4 emissions, however, 
these emissions are poorly constrained. According to recent global 
peatland distribution estimates, the largest areas of tropical peatlands 
are found in South America and Southeast Asia (Gumbricht et al., 2017). 
The peatlands of South America account for approximately 44% of 
tropical peatlands by area and volume (Gumbricht et al., 2017). In 
Southeast Asia, the carbon dynamics of tropical peatlands have been 
well studied over the past decades and this region has generally been 
identified as a major carbon source to the atmosphere as a result of 
land-use change and fires (Lilleskov et al., 2019; Ribeiro et al., 2021). In 
contrast, observations from tropical peatlands in South America remain 
scarce. For example, according to current global and regional carbon 
observation databases, such as FLUXNET, AmeriFlux, ICOS, AsiaFlux, 
OzFlux and ChinaFlux, as of April 18, 2022, less than 10% of global eddy 
covariance (EC) sites are in the tropics, and only one of these sites (this 
study) represents Amazonian peatlands. Consequently, we have a poor 
understanding of how these ecosystems function and respond to climate 
variability leading to large uncertainties about their carbon cycle pro
cesses and budgets (Griffis et al., 2020). Indeed, several studies indicate 
that the differences between bottom-up and top-down estimates of CH4 
and carbon dioxide (CO2) budgets range from 40% to 700% in tropical 
South America (Meng et al., 2015; Ribeiro et al., 2021; Zhang et al., 
2017). 

Comprehending and predicting carbon cycle processes in terrestrial 
ecosystems and their responses to environmental changes requires 
integrating empirical research and field observations with modeling 
efforts that include mathematical and computational representations. 
Model simulation of carbon cycle processes for peatlands is complex and 
relies on the coupling among many specific biophysical and biogeo
chemical submodels, e.g., energy transport, hydrological, soil carbon 
mineralization, and canopy photosynthesis. Several studies have used 
different land surface models (LSMs) to estimate the CH4 emissions and 
CO2 fluxes from wetlands at regional and global scales (e.g., Largeron 
et al., 2018; Melton et al., 2013; Paudel et al., 2016; Riley et al., 2011; 
Zhang et al., 2017; Zhuang et al., 2006). At the site scale, LSMs have 
been widely applied to temperate and boreal peatlands (e.g., Ma et al., 
2021; Ricciuto et al., 2021; Yuan et al., 2021a, 2021b); however, despite 
the importance of tropical peatlands, few modeling studies have re
ported their carbon flux simulations (Farmer et al., 2011; Kurnianto 
et al., 2015), mainly due to the scarcity of tropical peatland observations 
for model parameterization and evaluation. In addition, tropics-specific 
model development has faced many challenges in achieving high per
formance ecosystem carbon cycle simulations. For example, recent 
studies recognized that most LSMs are unable to capture seasonal vari
ations in canopy photosynthesis and transpiration of Amazonian ever
green forests (Chen et al., 2020), because traditional 
plant-functional-type (i.e., tropical broadleaf evergreen trees) parame
ters are not able to adequately represent the leaf phenology of these 
complex ecosystems where a dry season increase in canopy gross pri
mary production (GPP) is linked to new maturing leaves (Saleska et al., 
2016; Wu et al., 2016, 2020). 

Another critical challenge for the peatland model simulation is how 
to mechanistically represent the carbon-related microbial processes. It is 
well recognized that microbial activities fundamentally drive peatland 
carbon dynamics in soils (Bridgham et al., 2013; Dean et al., 2018; Xu 
et al., 2016). For example, microbe-mediated soil organic matter 
mineralization provides dissolved organic carbon as the available car
bon for CO2 and CH4 production. Acetoclastic and hydrogenotrophic 
methanogenesis dominate most biological CH4 production from acetate, 

CO2 and H2. Microbial oxidation of CH4 is controlled mainly by aerobic 
and anaerobic methanotrophy. In addition to substrate quantity and 
quality, and oxygen availability, methanogenesis and methanotrophy 
are also directly and indirectly controlled by soil pH, temperature, 
moisture, and abundance of different terminal electron acceptors (TEA) 
(Bridgham et al., 2013; Dean et al., 2018; Riley et al., 2011; Xu et al., 
2016). Because of limited measurements and the complexity of 
biogeochemical processes in peatlands, most LSMs do not explicitly 
represent microbes and their controls on carbon cycling. 

Our team recently established an EC flux site in a protected natural 
Amazonian palm swamp peatland near Iquitos, Peru (Griffis et al., 
2020). Measurements from the site are helping to improve our under
standing of tropical peatland biogeochemical processes. We have re
ported the ecosystem-scale observational CO2 and CH4 fluxes and 
budgets for this Amazonian palm swamp peatland (Griffis et al., 2020). 
These data suggest that the peatland is acting as a significant long-term 
and year-round carbon sink (e.g., − 253 to − 627 gC m − 2 y − 1 in 2019). 
We have also implemented a new wetland version for the land compo
nent of the Energy Exascale Earth System Model (ELM) to increase our 
capacity to diagnose and forecast changes in the carbon balance of these 
tropical peatland ecosystems (Ricciuto et al., 2021). ELM has recently 
added several key microbial mechanisms and processes, such as meth
anogenesis based on H2 and CO2 (hydrogenotrophic methanogenesis), 
methanogenesis based on acetate (acetoclastic methanogenesis), aerobic 
methanotrophy, anaerobic methanotrophy, and H2 production, which 
have improved the simulations of carbon cycle processes in temperate 
and boreal peatlands (Ricciuto et al., 2021; Xu et al., 2015). This model 
has been comprehensively evaluated and successfully applied to a boreal 
peatland (Shi et al., 2021; Yuan et al., 2021a, 2021b), but has not been 
applied to tropical peatlands. 

The objectives of this work, therefore, were to: 1) Evaluate the per
formance of ELM in simulating the energy and carbon fluxes for the 
Amazonian palm swamp peatland; 2) Diagnose and improve model 
deficiencies and biases; and 3) Identify the key parameters and associ
ated processes controlling the variability of energy and carbon fluxes. 
First, we tested the ability of ELM with default parameters and modified 
several key parameter algorithms according to site-specific character
istics. Second, based on the improved model, a Monte Carlo parameter 
sensitivity analysis and optimization was conducted using a surrogate- 
assisted machine learning approach. Finally, the diel and seasonal 
simulations for energy and carbon fluxes were evaluated against EC 
observations over the period 2018 - 2019. 

2. Methodology 

2.1. Study site and observations 

This study was conducted at the AmeriFlux site PE-QFR (3◦50′03.9′′

S; 73◦19′08.1′′ W), a protected natural palm swamp peatland forest 
located near Iquitos in the Loreto region in the Peruvian Amazon. The 
dominant tree species are Mauritia flexuosa palms (61%) and Tabebuia 
insignis (15%) (Mitidieri, 2014). The current vegetation community was 
established ca. 400 years ago (Roucoux et al., 2013). 
M. flexuosa-dominated palm swamp forests are the dominant peatland 
type in the Peruvian Amazon (78%). The average canopy height at this 
site is 21.3 m and mean annual leaf area index (LAI) estimated from 
satellite observations ranged from 3.9 to 4.9 m 2 m − 2 in 2018 and 2019, 
respectively (Griffis et al., 2020). The lower canopy layer was dominated 
by dicot individuals (such as T. insignis), while the upper canopy was 
dominated by palms. The peat thickness varies from 1.9 to 2.5 m 
(Bhomia et al., 2019) with a total soil C pool of ~740 Mg C ha − 1. The 
site is characterized by a tropical wet-dry climate. Mean annual air 
temperature and precipitation from 2003 to 2017 were 27.2 ◦C and 
2753.2 mm, respectively. The “wet” high-rain season is typically from 
February to April with mean air temperature at 27.4 ◦C and accumulated 
precipitation of 810 mm; the “dry” low-rain season is typically from 
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August to September with mean air temperature at 27.6 ◦C and pre
cipitation of 545 mm (Griffis et al., 2020). If microtopographic hetero
geneity is not considered, this site is quasi-permanently waterlogged 
with > 10 cm water table (Hergoualc’h et al., 2020) and a terrain slope 
that is generally less than 2%. 

Meteorological and micrometeorological instruments were installed 
at this site in 2017. Variables measured or calculated include half-hour 
EC fluxes of energy, water vapor, CO2 and CH4, air temperature, relative 
humidity, precipitation, global solar radiation, net radiation (Rn), and 
photosynthetically active radiation (PAR) at a height of 40 m. We did 
not force energy balance closure of the EC flux measurements prior to 
model comparisons. Ancillary measurements include soil volumetric 
water content and soil heat flux at 10 cm depth, and water table level is 
recorded in a shallow well. Note that the CH4 observations were un
available in 2018 due to lightning strike instrument damage. More de
tails on the site, instruments and flux data processing have been reported 
by Griffis et al. (2020). 

2.2. Model description and simulation procedures 

ELM, the land component of E3SM, is based upon the Community 
Land Model (CLM4.5, Oleson et al., (2013). A peatland version of ELM, 
ELM-SPRUCE, includes improved representation of microtopography 
and hydrology (Shi et al., 2015), a new plant functional type of 
Sphagnum moss (Shi et al., 2021), and new microbial functional 
group-based CH4 cycling (Ricciuto et al., 2021; Xu et al., 2015). 
ELM-SPRUCE, originally designed to simulate a northern Minnesota 
bog, is further developed here for tropical peatland simulations. 

The implementation of the model simulations included three phases. 
The first two phases, accelerated decomposition (AD) spin-up and final 
spin-up, follow the same strategy used for CLM4.5 (Thornton and 
Rosenbloom, 2005). The AD-spin-up simulation of 600 years allowed the 
system to accumulate carbon and reach an equilibrium state in an 
accelerated mode. A 50-year final spin-up subsequently allowed the 
system to operate with normal decomposition parameters before con
ducting transient (contemporary) simulations. The third phase included 
transient simulations running from 1980 to 2020. Following model 
function improvements and parameter optimization, all three phases 
were repeated. The model results for 2018 and 2019 in the third phase 
were used to evaluate the model performance in this study. 

The hourly atmospheric forcing data (from 2018 to 2019) were ob
tained from the PE-QFR site, including air temperature, specific hu
midity, solar radiation, wind speed, air pressure, PAR and precipitation. 
Due to missing values (< 20%) in the observed precipitation, hourly 
ERA5 (https://doi.org/10.24381/cds.adbb2d47) reanalysis precipita
tion was used to fill these gaps. For all three model simulation phases, 
we repeatedly cycled the 2-year forcing data as offline runs. Morpho
logical and physiological parameters of a single plant functional type 
(tropical broadleaf evergreen tree) was used to define the tree species at 
this site. Default values for vegetation, soil and microbial parameters in 
ELM-SPRUCE were used for the initial model simulations (Table S1). 

2.3. Model improvement 

Initial simulations using ELM-SPRUCE with default parameters 
resulted in poor representation of the carbon dynamics for this 
Amazonian palm swamp peatland, mainly because the annual season
ality and dynamics in CO2 and CH4 fluxes were not well simulated 
(Fig. S1). To improve the seasonal performances, parameter optimiza
tion was conducted for the default model as described in Section 2.4. 
However, the final ‘optimal’ parameter values for the default model 
were still not able to yield realistic simulations, indicating the model- 
observation difference cannot be resolved through model parameter 
optimization alone. We further found that the poor simulations were 
primarily related to unrealistic descriptions of peat soil water retention, 
hydrological controls on CH4 processes, and seasonal behavior of canopy 

assimilation for this peatland in the default model. The three corre
sponding model algorithms of ELM-SPRUCE were then modified ac
cording to site-specific characteristics with subsequent parameter 
optimization. Detailed procedures are presented in the Supplementary 
Material, and a summary of the modifications is presented here: 

Soil water retention curve. According to the field measurements by 
Iiyama et al. (2012), we replaced the default soil water retention func
tion with the van Genuchten function (van Genuchten, 1980) as Equa
tion 1 in Section 1.1 of the Supplementary Material. The new function 
can produce higher residual water content, which is more realistic for 
tropical peat than the Clapp and Hornberger function in the default 
model (Fig. S2). 

Water coverage scalar for CH4 processes. We included a simple water 
coverage scalar (finundation) for the Amazonian palm swamp peatland in 
the model (Section 1.2 in the Supplementary Material, Fig. S3). Acetate 
production and CH4 production, oxidation, and transport are limited by 
this scalar when the ground surface is not fully covered by water. The 
scalar is calculated using a water table level dependence based on the 
observational relationship of water table level (below ground surface) 
and ecosystem CH4 fluxes (Griffis et al., 2020). 

Seasonally varying leaf carbon-to-nitrogen ratio. Although ELM- 
SPRUCE assumes a constant leaf carbon-to-nitrogen ratio (C/N ratio), 
we hypothesized that there is seasonality in this C/N ratio in this 
Amazonian palm swamp peatland following the same temporal trend as 
other Amazonian forests. According to field measurements from other 
studies (Carswell et al., 2000; Chavana-Bryant et al., 2017; Parolin et al., 
2002), we developed an empirical bell-shaped function describing the 
leaf C/N ratio change with aging as given in Equation 3 of Section 1.2 in 
the Supplementary Material (Fig. S4). The function was integrated into 
the Farquhar-von Caemmerer-Berry (FvCB) submodel for canopy 
photosynthesis within ELM. 

2.4. Parameter sensitivity and optimization 

To identify the key parameters controlling the variability of energy 
and carbon fluxes and to reduce the discrepancies between model sim
ulations and observations, model parameter sensitivity and optimization 
were conducted with the Markov Chain Monte Carlo (MCMC) approach 
and a neural-network-based surrogate model. These procedures were 
performed using a novel tool — the Offline Land Model Testbed (OLMT) 
(Ricciuto et al., 2018). The OLMT performs model ensembles using 
different parameter combinations and provides post-processed model 
outputs to the Uncertainty Qualification Toolkit (UQTk) (Ghanem et al., 
2016) to analyze parameter sensitivities. OLMT also builds surrogate 
models for selected model outputs that can be used for parameter 
optimization with reduced computational cost. More detailed informa
tion about the methods and tools can be found in the studies by Safta 
et al. (2015) and Ricciuto et al. (2018). Briefly, there were three key 
steps for the parameter sensitivity and optimization procedure:  

1) Initial sampling. 65 key parameters that play a role either directly or 
indirectly in carbon dynamics were initially selected for parameter
ization (Table S1). These adjustable parameters are relevant to sur
face energy exchange, hydrology, soil biogeochemistry, and plant 
physiology. The ranges of these parameters were obtained from 
published papers to constrain parameter sensitivity and optimization 
(Ricciuto et al., 2018; Xu et al., 2015). After their prior uniform 
distributions were defined, 6000 parameter sets were randomly 
sampled within their acceptable ranges using a Monte Carlo sam
pling technique.  

2) Global sensitivity analysis. First-order Sobol index (also known as the 
main effect) and total Sobol index (also known as the joint total ef
fect) were used to quantify the parameter sensitivity using a Bayesian 
compressive sensing method with UQTk (Sargsyan et al., 2014). 
Because the main effect index measures the fractional contribution of 
the total variance resulting from an independent parameter and all 
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interactions with other parameters, it can also help diagnose each 
parameter’s total role in determining specific output variation. The 
joint total effect includes the sensitivity of both first order effects as 
well as the sensitivity due to interactions between a given parameter 
and all other parameters, and it is used to identify the parameter 
interactions. In this study, CO2 fluxes, CH4 fluxes, gross primary 
production (GPP), ecosystem respiration (ER), and latent heat fluxes 
(LE) were selected as output quantities of interest (QoI). To identify 
the seasonal patterns of parameter sensitivities, specific wet and dry 
seasons were distinguished for each QoI according to Griffis et al., 
(2020) (wet season is DOY 32–120 in both 2018 and 2019; dry 
season is DOY 152–304 in 2018 and DOY 213–273 in 2019, 
respectively). After ranking the sensitivity indices of all parameters 
in the OLMT, the 21 most sensitive parameters were identified for 
each output of interest in different seasons (see Section 3.1). 

3) Parameter downselection and optimization. For the most sensitive pa
rameters above, the 21 - dimensional parameter set was then again 
randomly sampled from their prior ranges; the other 44 less-sensitive 
parameters were omitted given their non-significant impacts on the 
model outputs (QoIs). Next, using the OLMT, we performed a second 
model ensemble with 4000 ELM simulations, and conducted a sec
ond sensitivity analysis with UQTk on these 21 parameters. We 
constructed neural network-based surrogate models for each of the 
corresponding model outputs matching these observations, using the 
4000 ensemble simulations for training and validation. When 
building the surrogate models, 80% of the ensemble members were 
randomly selected for training and the remaining 20% were retained 
for independent cross-validation. MCMC was then used to optimize 
the 21 model parameters using 100,000 evaluations for each surro
gate model and the corresponding observations (Safta et al., 2015). 

2.5. Model evaluation 

Hourly outputs from ELM were used for examining the diel cycles of 
LE, sensible heat fluxes (H), GPP, ER, net ecosystem exchanges of CO2 
and CH4. Daily outputs were used for examining their seasonal patterns. 
Since we only have the observational data of CH4 fluxes in 2019, we took 
the 2019 data as an example for representing the diel behavior in this 
study. Taylor diagrams were used to represent the statistical compari
sons of seasonal model performances against observations with three 
statistical tests, including Pearson correlation coefficient (r), root mean 

square error (RMSE), and the standard deviation (SD) ratio between the 
simulated and observed results. 

3. Results and discussion 

3.1. Parameter optimization 

Compared to default values in ELM, the values of 21 key parameters 
were changed after optimization with the Bayesian inference analysis 
(Table 1). These parameters mainly related to photosynthesis, 
phenology and CH4 production and transport. Specifically, both pa
rameters of the base rate of plant maintenance respiration (br_mr) and its 
temperature sensitivity (q10_mr) decreased compared to the default 
values for tropical broadleaf evergreen trees in ELM, indicating less 
maintenance respiration costs during plant growth and lower tempera
ture dependence of maintenance respiration. The carbon allocation pa
rameters were optimized with lower fraction of nitrogen allocated to 
RuBisCO enzyme (flnr) and higher fine root to leaf allocation ratio 
(froot_leaf). The optimized flnr (0.1135) was very close to the value re
ported for oil palm (0.1005, Fan et al., 2015). A higher optimized 
Ball–Berry stomatal conductance slope (mp, 7.0) indicates higher sto
matal conductance and lower stomatal efficiency, which was well within 
the range of seasonally dry Amazonian forests (5.98 - 8.85, average 7.38, 
Wu et al., 2020). Compared with the default values, the parameters of 
vegetation phenology (leaf_long) and canopy leaf area distribution (sla
top) also increased. Optimized leaf_long and slatop were also consistent 
with previous studies for the oil palm (Fan et al., 2015). For the mi
crobial controls on CH4 fluxes, acetoclastic methanogenesis parameters 
(m_dAceProdACmax and m_dYAceMethanogens) were reduced, however, 
the decomposition rate of dissolved organic matter (k_dom) and 
plant-mediated CH4 transport (m_dPlantTrans) were enhanced after 
parameter optimization. Although direct evaluation of these CH4-related 
parameter values could not be conducted in this study, previous obser
vations from other Amazonian peatlands can provide some insights. For 
example, the contribution of acetoclastic methanogenesis to CH4 pro
duction was found to be lower (Finn et al., 2020; Holmes et al., 2015), 
and the contribution of plant transport to total CH4 fluxes was higher 
(van Haren et al., 2021) compared to temperate and boreal peatlands 
(see Section 3. 4 and 3.5), implicitly supporting these optimization 
results. 

Well-defined parameter bounds can provide a strong constraint for 

Table 1 
Default values and bound constraints of 21 key parameters and their final optimized values against observations. Most information on parameter bounds was from the 
summaries by Ricciuto et al. (2018) and Xu et al. (2015). For the parameters not included in their papers (*), their bounds were defined as +/- 50% of the default values 
in the ELM-SPRUCE version. ** means the average of all plant functional types in the default model.  

Parameter Initial range Default value Optimized value Description 

bdnr 0.125–0.375 0.141 0.141 Bulk denitrification rate 
br_mr 1.26e-6 - 3.75e-6 3.75E-06 1.50E-06 Base rate for maintenance respiration (gC gN − 1 s − 1) 
dleaf 0.01 - 1 0.04 0.04 Characteristic leaf dimension 
fcur 0 - 1 1 1 Fraction of allocation that goes to current growth 
flnr 0.0231 - 0.264 0.2014** 0.1135 Fraction of leaf N in RuBisco 
froot_leaf 0.3 - 2.5 0.5645** 2.5 Fine root to leaf allocation ratio 
frootcn 21 - 63 45.25** 42 Fine root C:N ratio 
leaf_long 0 - 7 1.1** 1.78 Leaf longevity (years) 
livewdcn 25 - 75 0.763 0.763 Live wood C:N ratio 
mp 4.5 - 13.5 4.23 7.0 Ball-Berry slope parameter 
q10_mr 1.3 - 3.3 2.21 1.3 Temperature sensitivity for plant maintenance respiration 
r_mort 0.0025 - 0.05 0.05 0.05 Mortality rate 
slatop 0.002 - 0.03 0.009* 0.012 Specific Leaf Area (SLA) at top of canopy 
k_dom 0.00595–0.0375 0.007 0.025 Decomposition rate of dissolved organic matter 
m_dAceProdACmax 1e-08 - 0.035 2.40E-06 1.00E-07 Maximum rate of acetic acid production from available carbon (mmol m − 3 h − 1) 
m_dACMinQ10 1.5 − 4.5* 3 3 Temperature sensitivity of available carbon mineralization 
m_dGrowRAceMethanogens 0.004 - 2.88 0.008 0.008 Growth rate of acetoclastic methanogens (day − `1) 
m_dH2ProdAcemax 2.5e-09 - 1.24 5.00E-08 5.00E-08 Maximum reaction rate of conversion of H2 and CO2 to acetic acid (mmol acetate g − 1 h − 1) 
m_dYAceMethanogens 0.037–0.3 0.2 0.162 Growth efficiency of acetoclastic methanogens (mol C mol acetate C − 1) 
m_dKCH4OxidCH4 0.0025 - 1.5* 1 1 Half-saturation coefficient of CH4 oxidation for CH4 concentration (mmol L − 1) 
m_dPlantTrans 0.008–17.2 0.00595 0.014 Parameter for plant-mediated transport  
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the parameter optimization and reduce parametric uncertainties. 
Several optimized parameters were very close to their defined bounds 
after optimization, i.e., froot_leaf and r_mort (vegetation mortality rate) 
met their upper bounds, while q10_mr hit its lower bound. A possible 
reason is that the optimization attempted to compensate for structural 
discrepancies between model simulations and observations by pushing 
these parameters toward either the minimum or the maximum of their 
given bounds (Ricciuto et al., 2018). This might imply that these opti
mized values can be further improved by extending the defined 
parameter bounds. Additional field investigations need to be conducted 
to assess the reasonableness of current vs. expanded bounds. 

The improvement and optimization procedures greatly enhanced the 
magnitude and seasonality of the simulated energy and carbon fluxes for 
the Amazonian palm swamp peatland. Fig. 1 shows the different model 
performances for LE, GPP, ER, CO2 fluxes, and CH4 fluxes with 

optimized and default parameter values against the observation data. In 
the default simulations, we did not find pronounced seasonal patterns of 
energy and carbon exchanges. In contrast, the improved model yielded 
marked improvements in GPP, CO2 fluxes, and CH4 flux simulations that 
matched the observations much better than the default model, especially 
the dramatic change between dry and wet seasons (Fig. 1b, c, e). This 
resulted mainly from the difference between optimized and default 
functions (hydrological and C/N ratio functions) and parameters (e.g., 
leaf_long, slatop, flnr, and froot_leaf), which are closely related to the 
representations of seasonal hydrological conditions and phenology of 
photosynthesis. The improvements for LE and ER simulations were 
relatively small, although their simulated values were still within or 
overlapped observation uncertainty ranges as measured by the 95% 
confidence intervals (Fig. 1a, d). Relatively poor performance on the 
seasonality of LE and ER indicates that their response to the changing 

Fig. 1. Seasonal differences between simulated and observed variables caused by parametric uncertainty. Variables are latent heat fluxes (LE), gross primary 
production (GPP), ecosystem respiration (ER), CO2 fluxes, and CH4 fluxes. All data are the average values corresponding to wet and dry seasons in 2018 and 2019. 
Red represents the simulation with optimized parameter set with 95% confidence interval. Blue represents the simulation with default parameters with 95% con
fidence interval. Gray indicates observational variable with standard deviation. 
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environment conditions was not captured very well within the annual 
time scale. These model-observation differences might be caused by 
unidentified model structural errors as well as model parameter errors 
(see Sections 3.2 and 3.3). The improved model clearly reduced the 
parametric uncertainty bounds for GPP and LE compared to the default 
model, and increased the uncertainty bounds for ER, CO2 and CH4 
fluxes. The parametric uncertainties varied according to different output 
variables, probably due to the impacts from other potential influencing 

processes or parameters related to the energy and carbon fluxes in the 
Amazonian palm swamp peatland (see Sections 3.2 and 3.3). With 
magnitudes and uncertainty bounds of the CO2 fluxes differing between 
optimized and default simulations, the PE-QFR site represented different 
carbon sink/source functions. For example, the simulation using the 
default parameters indicated the site always acted as a net carbon sink, 
while the optimized simulation indicates that the site was a net carbon 
source during the dry seasons (Fig. 1b). However, both simulations were 

Fig. 2. Comparing diel patterns (mean ± standard deviation) of simulated and observed hourly net radiation (Rn), latent heat fluxes (LE), sensible heat fluxes (H), 
CO2 fluxes, and CH4 fluxes for wet and dry seasons in 2019. 
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all enclosed within the large observation uncertainty bounds of the CO2 
fluxes. The fact that the upper observation uncertainty bounds were also 
above zero during dry seasons further indicates that the optimized 
simulation had nearly consistent estimation for the CO2 fluxes. 

3.2. Net radiation and turbulent energy exchange 

The improved ELM model simulated diel patterns of Rn and turbulent 
energy fluxes (LE and H) that were in relatively good agreement with the 
observations (Fig. 2a - f). Taking the 2019 wet season as an example, the 

simulated diel pattern for LE was in excellent agreement with the ob
servations with peak midday values of 220.4 W m − 2 (225.1 W m − 2 for 
observations). However, the simulated maximum for Rn was under
estimated by about 83.9 W m − 2 and the simulated peak of H was 72% 
higher than the observations. For the 2019 dry season, ELM under
estimated Rn and LE from 10:00 to 15:00. It simulated lower than 
observational Rn peak by 22%, and lower than observational LE peak by 
28%. In contrast, ELM overestimated H from 11:00 to 14:00 in the 2019 
dry season, with a simulated midday peak of 191.6 W. m − 2 (79.2 W m −
2 for observation peak). 

Fig. 3. Comparing seasonal patterns of simulated and observed daily average (5-day moving average) net radiation (Rn, a), latent heat fluxes (LE, b), sensible heat 
fluxes (H, c), CO2 fluxes (d) and CH4 fluxes (e) in 2018 and 2019. (Shade shows dry seasons according to Griffis et al., 2020). 
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ELM simulated the seasonal patterns of daily Rn and energy fluxes 
reasonably well with maximum values occurring during the dry seasons 
and minimum values during the wet seasons (Fig. 3a - c). The model 
performance of seasonal Rn and LE were generally better than for H 
when compared to the observations. However, there were important 
inconsistencies in the range of simulations and observations. Fig. 3a - c 
indicate the underestimations for Rn and LE and overestimation for H 
existed during the dry seasons, which is comparable with the disagree
ments of their diel patterns. For example, in 2019 the annual peak of the 
simulated LE was 113.6 W m − 2 and its minimum was 11.1 W m − 2, 
31.8% and 24.0% lower than the observations, respectively. The simu
lated H peaked at 72.3 W m − 2 and reached a minimum value of − 28.1 
W m − 2, while the observations revealed lower single observed 
maximum and minimum H of 35.3 W m − 2 and − 3.2 W m − 2, 
respectively. 

The Taylor diagrams in Fig. 4a - c also show better performances for 
Rn and LE compared to H. The simulated Rn in both years had high 
correlation with the observations (r = 0.91), similar SD (13.5 W m − 2), 
and low RMSE (20.4 W m − 2). The model performance of Rn was similar 
between the two years. For LE, the simulations showed higher correla
tion with the observations in 2018 (r = 0.75) compared to 2019 (r =
0.44). However, the differences in RMSE and SD between the two years 
were not large, with averaged RMSE = 13.0 W m − 2, and averaged SD 
=7.4 W m − 2. This indicates that the model performance for Rn and LE 
was relatively stable between years. In contrast, the simulated H showed 
more pronounced variability in performance. Compared to 2018 (RMSE 
= 11.3 W m − 2, r = 0.02, and SD =10.6 W m − 2), the simulations of H in 
2019 performed better with higher r (0.69) and lower SD (9.5 W m − 2) 
and a larger RMSE (11.5 W m − 2). The model’s ability to simulate H of 
tropical peatlands is to some extent linked to distinct hydrological 

conditions between years. For example, the precipitation rate in wet/dry 
seasons of 2018 and 2019 were 8.7/5.8 mm d − 1 and 11.0 /4.9 mm d − 1, 
respectively. 

We hypothesize that the discrepancies were caused by model bias in 
transpiration, LAI, and turbulence exchange associated with the single- 
layer canopy scheme (i.e., the ‘big leaf’ assumption) in ELM. First, the 
deficiencies in simulating canopy transpiration may be a key cause of the 
model vs observation bias in LE. At this study site, the soil water is al
ways near or well above field capacity with a water table near the sur
face. The air temperature is relatively stable and high during the wet and 
dry seasons. For example, the mean air temperatures were 26.0/26.1 ◦C 
and 25.6/26.2 ◦C for the 2018 and 2019 wet/dry seasons, respectively 
(Griffis et al., 2020). Transpiration is expected to dominate evapo
transpiration given the relatively high canopy LAI. The simulations 
indicate that the transpiration accounted for 45.2 – 53.8% of evapo
transpiration during the wet seasons and 63.8 – 65.7% in the dry seasons 
(Fig. S5). This implies that a bias in transpiration can significantly in
fluence the relative partitioning of the turbulent heat fluxes that would 
be more pronounced during the dry seasons. The diel simulations further 
indicated that underestimated daytime LE occurred mainly in the dry 
seasons (Fig. 2d). In contrast, evidence suggests that during the dry 
seasons the higher VPD causes downregulation of canopy photosyn
thesis; however, no significant impact of VPD on LE was found because 
of enough soil water supply (Griffis et al., 2020). A number of Amazo
nian forest studies have shown that, LE is strongly controlled by Rn 
rather than soil water availability as predicted by LSMs (Griffis et al., 
2020; Restrepo-Coupe et al., 2021). In addition, some studies suggested 
that the static process – based stomatal conductance model, such as 
Ball-Berry model used in ELM, cannot capture the trade-off between 
hydraulic and stomatal regulation (Oliveira et al., 2021), especially for 

Fig. 4. Taylor diagrams showing correlations coefficients (dotted contours), standard deviations (black solid contours) and RMSEs (gray solid contours) between 
daily observations (net radiation Rn, a; latent heat fluxes LE, b; sensible heat fluxes H, c; CO2 fluxes, d; and CH4 fluxes, e.) and ELM simulations in 2018 and 2019. 
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the potential atmospheric dryness during the dry seasons. Other studies 
that applied LSMs over the Amazon region also reported an underesti
mation of evapotranspiration (Baker et al., 2021; Werth and Avissar, 
2004). These studies provide additional evidence for the modeling bia
ses related to vegetation control and the downregulation of stomatal 
conductance during the dry season (Chen et al., 2020; Werth and 
Avissar, 2004). 

Inaccurate simulation of LAI can also contribute to the underesti
mation of LE. The ELM simulated mean daily LAI (4.7 - 4.8 m2 m − 2) for 
2018 and 2019 were in the range of satellite observations (3.9 - 4.9 m2 

m − 2) (Fig. S6, Griffis et al., 2020). However, the simulated LAI shows 
little seasonal variability throughout the year, which contrasts with 
satellite observations showing a slight increase in LAI during the dry 
seasons (Fig. S6). For example, the mean simulated LAI during the wet 
and dry seasons of 2019 were statistically not different (p > 0.05) with 
4.76 and 4.77 m2 m − 2, respectively; while for the observed LAI, mean 
wet and dry season LAI of 2019 were statistically different (p < 0.05) 
with 3.7 and 5.0 m2 m − 2, respectively (Griffis et al., 2020). Recent 
studies have reported significant seasonal variation in LAI for Amazo
nian evergreen forests with evidence for higher LAI during the dry 
seasons caused by newly produced leaves (Wu et al., 2016, 2020). These 
new maturing leaves can drive a dry season increase in canopy photo
synthesis and transpiration (Wu et al., 2016, 2020). Additional LAI 
measurement and phenological monitoring need to be conducted to 
quantify the phenological stages of dominant trees, i.e., M. flexuosa and 
T. insignis, for this site. 

Another possible explanation is that the canopy leaves in this forest 
site were not realistically cooled during the daytime, given the single- 
layer canopy scheme implemented in the model. ELM simulated a 
single-layer canopy temperature (Tc) that was distinctly warmer around 
noontime and cooler after sunset when compared to the observed air 
temperature (Ta) (Fig. S7) and canopy temperature as derived from the 
sensible heat flux observations. The differences between Tc and Ta (ΔT) 
were more pronounced in the dry seasons than wet seasons (Fig. S7b, d). 
This implies that during the daytime, turbulent exchange and transpi
ration did not sufficiently remove the radiative heat load of the canopy, 
especially in the dry seasons. The differences between diel patterns of 
simulated Tc and Ta and the magnitude of ΔT (− 1.92 - 1.85 ◦C) were 
consistent with some observations in tropical forests (Dong et al., 2017). 
However, some observational studies for tropical forests showed lower 
magnitude of ΔT and argued that only sunlit leaves in the upper canopy 
were warmer than Ta (Miller et al., 2021). Rey-Sánchez et al. (2016) 
observed that the mean Tc of two tropical tree species was significantly 
cooler than Ta by 0.7 - 0.8 ◦C during the dry seasons. Generally, the 
canopy air gradually cools by sensible heat transfer, and higher wind 
speeds in the canopy can produce stronger heat transfer. The cooling of 
leaves depends on canopy position: the upper canopy has higher wind 
speed and is generally cooler than the lower canopy during the daytime, 
despite receiving more radiation (Bonan et al., 2021). However, with the 
single-layer canopy scheme in ELM, and limited observations, we could 
not identify the vertical distribution of microclimates along the canopy 
height profiles. Some recent studies using single-layer LSMs for forest 
sites reported that the simple scheme is frequently insufficient to 
describe the surface conditions (e.g., temperature, humidity and wind 
speed) (Bonan et al., 2018; Song et al., 2021). In contrast, relative good 
agreement has been mostly reported for shorter croplands and grass
lands (Bonan et al., 2018; Chen et al., 2015). 

Large differences in LE and H between simulations and observations 
have been associated with the failure to vertically partition the incoming 
solar radiation realistically for the depth of the whole canopy. Moreover, 
the simplification for simulating within-canopy turbulent processes with 
the single-layer canopy scheme could also contribute to these biases. As 
in CLM4.5, ELM is based on the assumption of the Monin-Obukhov 
Similarity Theory that the within-canopy turbulent transfer is driven 
by diffusion gradient and can be described using eddy diffusivities. 
These models simplify the within-canopy wind speed by being equal to 

the canopy-top friction velocity and including a dynamic drag coeffi
cient to describe the canopy stability condition (Bonan et al., 2021; 
Oleson et al., 2013). However, as Bonan et al. (2021) reviewed, this 
simple approach would bring bias when parameterizing turbulent fluxes 
between vegetation and the atmosphere, i.e., the definition of aero
dynamic conductance, and consequently it is difficult to represent the 
turbulent flux within the tree canopy. Bonan et al. (2021) argued that 
using multi-layer canopy schemes with a Lagrangian profiling approach 
in LSMs can significantly reduce these known biases in turbulent energy 
fluxes and partitioning for forests. For example, compared to 
single-layer canopy simulation, their results in a deciduous broadleaf 
forest showed that multilayer canopy simulations can enhance the 
daytime cooling in the upper canopy and consequently suppress tur
bulent mixing. At the same time, during the night, the warmer tem
perature was better resolved in the upper canopy with greater turbulent 
mixing. For our research site, further vertical profile micrometeorolog
ical observations, e.g., air temperature, VPD, and CO2 concentrations, 
would help improve these relevant model algorithms. This experimental 
and modeling work is ongoing. 

3.3. Net ecosystem CO2 exchange 

Diel patterns of simulated CO2 fluxes in both the wet and dry seasons 
are shown in Fig. 2g - h. ELM underestimated the peak diel CO2 fluxes for 
each season, despite using the objective parameter optimization pro
cedure (described in Section 2.3) for the photosynthesis-related pa
rameters and using the improved algorithm describing the seasonality of 
leaf C/N ratio. For example, in 2019 the peak simulated diel CO2 fluxes 
for the wet seasons were about − 16.2 μmol m − 2 s − 1, while the ob
servations peaked at − 20.4 μmol m − 2 s − 1. During the dry seasons, 
observed and simulated diel CO2 fluxes reached − 16.3 μmol m − 2 s − 1 

and − 10.3 μmol m − 2 s − 1, respectively. The underestimation of the 
observed diel CO2 fluxes mainly occurred in the daytime from 9:00 
to15:00 for both wet and dry seasons. 

ELM showed similar seasonal CO2 flux patterns as the observations 
with larger fluxes during the wet seasons and lower values during the 
dry seasons (Fig. 3d). For example, compared to the observations, the 
simulated fluxes during the wet season of 2019 were on average 38% 
lower at 1.82 μmol m − 2 s − 1. ELM simulations and the observations 
indicated that the PE-QFR site was a carbon sink during the wet seasons. 
During the dry seasons, ELM simulations indicated the peatland was a 
weak net CO2 source both in 2018 (0.1 μmol m − 2 s − 1) and 2019 (0.8 
μmol m − 2 s − 1). However, the gap-filled observations indicated that the 
peatland was a weak net CO2 sink (− 0.5 μmol m − 2 s − 1 in 2018 and 
− 0.03 μmol m − 2 s − 1 in 2019). From the Taylor diagram (Fig. 4d), we 
find that the model captured the amplitude of CO2 fluxes well in both 
2018 and 2019 with average r = 0.85, RMSE = 1.2 μmol m − 2 s − 1 and 
SD = 1.4 μmol m − 2 s − 1. Compared with the simulated CO2 fluxes in 
2018 (r = 0.81, RMSE = 1.3 μmol m − 2 s − 1, and SD = 1.3 μmol m − 2 s −
1), ELM simulations in 2019 had higher r (0.89), smaller RMSE (1.2 μmol 
m − 2 s − 1), and SD (1.6 μmol m − 2 s − 1) values in better agreement with 
the observations. 

The underestimation of net ecosystem CO2 exchange is directly 
related to the simulations of GPP and ER. Figure S8 shows an underes
timation of GPP compared to the observations (inferred from EC flux 
partitioning) following the parameter optimization and algorithm im
provements. Further, there were some large differences in ER that 
occurred during the wet seasons, while slight overestimations of ER 
were found in the mornings of the dry seasons. Griffis et al. (2020) also 
suggested that the decline in GPP and the enhanced ER dominated the 
pattern of NEE during the dry seasons. However, the drivers of NEE 
seasonality are complex and remain uncertain for Amazonian forests. 
Our previous work found that high light, air temperature, and vapor 
pressure deficit (VPD) can significantly limit the photosynthesis rate in 
these tropical peatlands despite the relatively high water table position 
(Griffis et al., 2020). However, other Amazonian forest studies have 
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indicated that leaf development and demography also determine the 
GPP seasonality (Saleska et al., 2016; Wu et al., 2016). These research 
efforts show that the seasonality of NEE may be more complex than the 
current model structure of most LSMs. Furthermore, we should 
acknowledge the calculation uncertainties for the EC partitioned GPP 
and ER values. For example, this study’s observed GPP and ER were 
estimated from a standardized NEE flux partitioning method that as
sumes the daytime ER follows the same relationship with environmental 
factors as the nighttime ER and uses a hyperbolic light-response method 
to estimate ER (Lasslop et al., 2010). Some studies have questioned the 
validity of these light-response partitioning methods because they adopt 
the same temperature sensitivity between daytime and nighttime and do 
not explicitly account for the Kok effect (Li et al., 2022; Zhang et al., 
2006). 

3.4. Net ecosystem CH4 exchange 

The improved ELM generally simulated diel CH4 fluxes well, 
although with a slight overestimation around noontime during the wet 
seasons (Fig. 2i - j). During the wet seasons, ELM showed a pronounced 
peak during midday, whereas the observations revealed a smaller peak 
at this time. The simulated peak (73.8 nmol m − 2 s − 1) was synchronous 
with, but slightly higher than, the observations (67.8 nmol m − 2 s − 1). 
During the dry seasons the simulated and observed CH4 fluxes had no 
distinct diel pattern. The variability in simulated CH4 fluxes across days 
was much smaller than observed in both the wet and dry seasons. The 
average simulated daily CH4 fluxes during the wet season were 50.6 
nmol m − 2 s − 1, 83.9% higher than the dry seasons (27.5 nmol m − 2 s −
1). 

An identifiable seasonal shift in CH4 fluxes was captured by ELM 
(Fig. 3e). The simulated daily CH4 fluxes had higher values during the 
wet seasons. Overall, ELM simulated that the site was a net CH4 source 
over the whole year, consistent with the observations. In 2019, the ELM 

simulated seasonal maximum CH4 fluxes occurred in March, reaching 
56.2 nmol m − 2 s− 1. Minimum emissions were simulated in November 
(20.5 nmol m − 2 s − 1). In the observations, maximum (116.8 nmol m − 2 

s − 1) and minimum (9.6 nmol m − 2 s − 1) CH4 fluxes occurred in 
February and November, respectively. Overall, the simulated seasonal 
pattern of daily CH4 fluxes did not represent the observed seasonal 
pattern of emissions. The seasonal variability of simulated CH4 fluxes 
was lower than the observations in both the wet (71.0 nmol m − 2 s − 1 

for observations, 50.5 nmol m − 2 s − 1 for simulation) and dry seasons 
(33.5 nmol m − 2 s − 1 for observations, 27.7 nmol m − 2 s − 1 for 
simulation). On the other hand, the Taylor diagram (Fig. 4e) indicates 
that simulated CH4 fluxes compared well with the observations (r =
0.79, RMSE=17.5 nmol m − 2 s − 1). However, the simulated SD (11.5 
nmol m − 2 s − 1) was considerably smaller than the observed values 
(19.1 nmol m − 2 s − 1), indicating that the model did not capture all of 
the short-term dynamics of CH4 exchange. The simulated weaker sea
sonal variability of CH4 emissions in tropical wetlands compared to 
other regions was also noted in a CLM4.5 modeling study (Meng et al., 
2015). 

Compared to the total net ecosystem CH4 exchange (Fig. 3e), the 
simulated CH4 fluxes via diffusion, ebullition, and plant transport 
exhibited a similar seasonal dynamic in the Amazonian palm swamp 
peatland - high during the wet seasons and low during the dry seasons 
(Fig. 5a). The same seasonal patterns of diffusive, ebullition and tree 
CH4 fluxes have been reported previously for field observations for 
peatlands in the Peruvian Amazon (Pangala et al., 2017; Teh et al., 
2017); however, some observational studies have found low seasonal 
variability of tree CH4 fluxes near this site (van Haren et al., 2021). The 
divergent seasonal trends may be linked to the interannual variations in 
environmental drivers (van Haren et al., 2021). Further, unrealistic 
modeling schemes in LSMs may also underlie the different performances 
(discussed below). 

The total simulated annual CH4 budget was 16.04 ± 4.47 g C m − 2 

Fig. 5. The seasonal patterns of simulated daily (5-day moving average) CH4 transport pathways in 2018 and 2019 (a). b presents a zoom of the plot for simulated 
midmonthly soil surface CH4 fluxes (by summing the simulated CH4 fluxes of soil diffusion and ebullition) in the period January 15 to July 15 of 2018, with 
corresponding soil chamber observations from Hergoualc’h et al. (2020) (Shaded error bars represent standard deviation). The pie chart shows the total contribution 
for each pathway to the annual sum of CH4 emissions (c). 
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year− 1 (mean ± SD, similarly hereafter) and was 27.1% lower than the 
observed budget of 22 ± 2 g C m − 2 year− 1 (Griffis et al., 2020). The 
simulated CH4 flux components of plant transport, soil diffusion, and 
ebullition during the dry seasons were 49.9%, 41.3%, and 61.0% lower 
than during the wet seasons, respectively. The simulated CH4 flux 
components of ebullition, plant transport, and soil diffusion contributed 
47.0%, 33.4%, and 19.6% to the annual total CH4 fluxes, respectively 
(Fig. 5c). Compared with field measurements of soil surface CH4 fluxes 
from January to July of 2018 at this site (data from Hergoualc’h et al., 
2020), the ELM sums of soil diffusion and ebullition CH4 fluxes were on 
average overestimated by about 51 ± 153% (− 43.1 - 18.4 nmol m − 2 s 
− 1) (Fig. 5b). This implies that the plant-mediated CH4 transport might 
also be underestimated by 51% for this same period given that there is 
reasonably good agreement between ELM and the EC CH4 budget. 
However, the magnitude of divergence varied by month but no apparent 
seasonality, and the underestimation may be larger than our estimations 
because the soil chambers can also partially capture root-mediated CH4 
transport. 

We hypothesize that the underestimation of the annual CH4 emis
sions by ELM compared to observations was caused by the poor simu
lation of the plant-mediated CH4 transport for tropical palms. This is 
because the CH4 diffusive fluxes are described with Fick’s Law and 
Henry’s Law, and ebullition is described using a bubbling threshold 
approach (CH4 concentration, pressure, or gas volume threshold) (Ma 
et al., 2021; Ricciuto et al., 2021; Riley et al., 2011), which are both 
abiotic physical processes and have been widely observed and well 
tested (Riley et al., 2011; Xu et al., 2015). In contrast, the transport of 
CH4 through the aerenchyma of vascular plants in ELM is calculated 

from soil CH4 gas concentration with one plant-mediated transport 
parameter (m_dPlantTrans) and two root parameters (Rootp and Root
Factor) (Ricciuto et al., 2021; Xu et al., 2015). This approach does not 
include plant non-aerenchymatous transport mechanisms yet, such as 
the transport via stems (see Section 3.6). Our sensitivity analyses also 
indicated that the simulated total CH4 fluxes were less sensitive to 
m_dPlantTrans and root depth distribution parameters (see Section 3.5). 
In addition, several recent studies in Amazonian regions have reported 
that the stems of woody trees can act as an important pathway for the 
CH4 transport (Pangala et al., 2017). Griffis et al. (2020) also suggested 
the potential importance of the plant-mediated CH4 transport at the site 
according to the observed relationships between CH4 emissions and LE 
and CO2 fluxes (i.e., via a surrogate relation for transpiration). There
fore, the estimation bias in the CH4 fluxes may be related to the model 
structure given the simple empirical approach representing the 
plant-mediated CH4 fluxes for the Amazonian palm swamp peatland. 
Recent experiments have been initiated at the PE-QFR site to further 
investigate these mechanisms. 

3.5. Parameter controls on energy and carbon exchange 

Fig. 6 represents the main effect sensitivity indices of model output 
variables to 21 particular parameters, indicating diverse parameter 
contributions to the simulation variance during different seasons. For 
the energy exchange, the processes of vegetation phenology (fcur and 
leaf_long), stomatal regulation of transpiration (mp), and nitrogen- 
photosynthesis relationship (flnr) were generally very important 
(Fig. 6a). However, different impacts of parameters on energy fluxes 

Fig. 6. Sensitivity analysis of 21 screened parameters (Table 1) for latent heat fluxes (LE), gross primary production (GPP), ecosystem respiration (ER), CO2 fluxes, 
and CH4 fluxes (a). All output variables represent the average values of wet and dry seasons in 2018 and 2019. Figure b illustrates the independent sensitivities of CH4 
fluxes controlled by microbial parameters (for which parameters begin with ’m_’). The width of each bar represents the main effect sensitivity index (Sobol index) for 
each parameter. 
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exist across seasons at the PE-QFR site. During the wet seasons, vege
tation phenology (fcur) contributed to LE more than the stomatal 
regulation parameter (mp), while the contribution from mp was larger 
than fcur during the dry seasons. This indicates that a trade-off between 
vegetation phenology (fcur) and physiology (mp) likely exists in this 
ecosystem. Renninger and Phillips (2011) suggested that M. flexuosa can 
exhibit similar capacities for water transport per unit leaf area under 
different water conditions with differing hydraulic strategies. Our pre
vious work observed that increased VPD during the dry seasons was 
associated with a down regulation of photosynthesis (Griffis et al., 
2020), which may be due to the hydraulic regulation of stomata. Besides 
the model structure errors (Section 3.2), the vegetation hydraulic stra
tegies might also contribute to the changes of CO2 fluxes and LE during 
the dry seasons. The strong dependence of energy exchange on leaf_long 
also highlights the importance of leaf phenology. From 2018 to 2019, 
significant interannual changes in parameter controls on energy ex
change were found as well because of the physiological plasticity of 
tropical vegetation in response to different growth environments. For 
example, in contrast to the dry season of 2018, the impact of fine root C: 
N ratio (frootcn) on LE was enhanced in the dry season of 2019, 
reflecting changing impacts of new fine root growth associated with 
different nutrient allocation strategies, perhaps due to the short dry 
season for green-up in 2019 (Dry season duration: 61 days of 2019 vs 
153 days of 2018). Indeed, for the PE-QFR site, it was found that fine 
root productivity rate of M. flexuosa palm tends to increase linearly with 
rising soil temperature, while fine root mortality tends to decrease lin
early with increased water table level (Dezzeo et al., 2021). 

In contrast to energy fluxes, no apparent seasonal or interannual 
differences in the relative sensitivity of CO2 fluxes to specific parameters 
were found (Fig. 6a). The variance of CO2 fluxes mainly depended on 
vegetation mortality rate (r_mort), fine root to leaf allocation ratio 
(froot_leaf), and fine root C:N ratio (frootcn). However, similar to energy 
fluxes, GPP and ER were most sensitive to fcur, mp, flnr and leaf_long. The 
most sensitive parameters for GPP and ER were flnr and fcur, respec
tively. Although we did not test the sensitivity of the leaf C/N ratio in the 
revised model, the better seasonal performance of CO2 fluxes with the 
new leaf C/N ratio function indicates its importance for the seasonality 
of GPP. Previous studies have observed considerable age-related varia
tion in leaf traits including leaf nitrogen/carbon in Amazonian forests 
and found that leaf nitrogen increases by 20 - 25% during the dry sea
sons in Amazonian floodplains with the flush of new leaves (Chava
na-Bryant et al., 2017; Parolin et al., 2002), which contributes 
significantly to the seasonality of GPP (Wu et al., 2016, 2020). 

There was significant seasonal variability in the most sensitive pa
rameters for CH4 fluxes. The sensitivity to plant- and soil-related pa
rameters was higher than for microbial parameters (Fig. 6a). During the 
wet seasons, CH4 fluxes were most sensitive to three key plant-related 
parameters including r_mort, flnr, and the plant maintenance respira
tion parameter (br_mr). During the dry seasons, r_mort was a single key 
parameter associated with the variations in CH4 fluxes. The seasonal 
parameter variability controlling CH4 fluxes is related to the seasonal 
changes in plant activities. Plants regulate carbon flux dynamics, 
including the carbon input of litter and root exudates for peat formation. 
They also control gas transport (i.e., oxygen, CH4) between the atmo
sphere and soil/water through their pneumatophore system (van Lent 
et al., 2019). However, in a global simulation study using CLM4.5, CH4 
emissions in tropical wetlands were more sensitive to the soil substrate 
production represented by heterotrophic respiration (Paudel et al., 
2016). Such difference in parameter sensitivity is likely caused by the 
different CH4 biogeochemical schemes and diverse ecosystem charac
teristics. For example, compared to CLM4.5, ELM adds additional pro
cess complexity through its representation of explicit methanogenic 
pathways and microbial populations (Ricciuto et al., 2021). 

Our independent sensitivity analysis on microbial controls for CH4 
fluxes also represented the seasonal variation in relative parameter 
importance (Fig. 6b). It illustrates that CH4 fluxes were mostly 

dominated by the growth efficiency of acetoclastic methanogens 
(m_dYAceMethanogens) during the wet seasons. During the dry seasons, 
in addition to m_dYAceMethanogens, CH4 fluxes were also very sensitive 
to the maximum acetic acid production rate (m_dAceProdACmax). Ace
toclastic methanogenesis is generally considered to be the main CH4 
production pathway in temperate and boreal peatlands (Xu et al., 2016), 
while some studies have indicated that hydrogenotrophic methano
genesis can be responsible for > 50% of the CH4 production in tropical 
peatlands (Holmes et al., 2015). One recent microbial community 
structure study also suggested that hydrogenotrophic methanogenesis is 
the primary source of CH4 in seven peatlands from the Pastaza-Marañón 
Basin (Finn et al., 2020). However, our sensitivity analyses did not 
identify a high sensitivity of hydrogen (H2) consumption parameter 
m_dH2ProdAcemax (the maximum reaction rate of conversion of H2 and 
CO2 to acetic acid), although the values of acetoclastic methanogenesis 
parameters m_dAceProdACmax and m_dYAceMethanogens were reduced 
after optimization. Future parameter sensitivity analyses and optimi
zation for this Amazonian palm swamp peatland need to include 
hydrogenotrophic-methanogenesis-related parameters, such as the 
growth rate and temperature sensitivity of hydrogenotrophic metha
nogens. Because the conversation of H2 produced through fermentation 
of carbohydrates to acetic acid and CH4 also depends on the concen
tration of H2 (Xu et al., 2015) and pH condition (Finn et al., 2020), the 
threshold parameters of H2 concentration and pH condition also need to 
be considered. Here, we did not find a strong impact of plant-mediated 
CH4 transport (m_dPlantTrans) on the variability in CH4 emissions for all 
seasons. However, the results above indicate that plant-related param
eters have potential contributions to CH4 plant transport. We acknowl
edge that the parameter sensitivity analysis cannot provide insights into 
parameters or processes that are missing from the model structure. For 
example, Fig 6 shows that CH4 fluxes were most sensitive to only a few 
key parameterizations, indicating that some CH4 processes in current 
ELM that are either not fully understood or not captured with current 
posterior parameter ranges. As described above (Sections 3.2, 3.3 and 
3.4), the model algorithms for energy and CO2 fluxes and 
plant-mediated CH4 fluxes may need to be further improved. These 
model analyses are being used to inform ongoing experiments at the 
research site. 

As expected, we found that the parameters for the fraction of nitro
gen allocated to RuBisCO enzyme (flnr) and the Ball–Berry stomatal 
conductance slope (mp) were both important to the energy and carbon 
fluxes for the PE-QFR site. This is consistent with numerous studies on 
terrestrial ecosystems with CLM and the previous versions of ELM (Fan 
et al., 2015; Ricciuto et al., 2018; Shi et al., 2021; Yuan et al., 2021b). 
This is because flnr determines the nitrogen use strategies of leaf carbon 
assimilation and affects the development of leaf area, and mp determines 
the leaf energy loss from transpiration and carbon photosynthesis and 
respiration by controlling stomal conductance in the model. Our study 
also highlights the importance of the parameters related to photosyn
thetic phenology for the Amazonian palm swamp peatland, such as the 
parameters of fcur and br_mr, which control the photosynthetic effi
ciency in the model, and leaf_long and r_mort, which control the timing of 
vegetation activity (i.e., vegetation mortality rate, r_mort, was the most 
sensitive parameter for the variance of CO2 fluxes in Fig. 6a). Several 
global modeling studies have also identified the significant impacts of 
these parameters on photosynthetic capacity and phenological timing 
(Kolassa et al., 2020; Ricciuto et al., 2018). Further, Ricciuto et al. 
(2018) also found that in ELM the sensitive parameters for tropical 
carbon cycling are mostly associated with vegetation processes. For 
example, the leaf area in tropical broadleaf evergreen sites is very sen
sitive to the leaf longevity (leaf_long) and the base rate of maintenance 
respiration (br_mr). 

For the energy and carbon fluxes, the temperature controls on 
vegetation processes also need to be considered. Temperature regulates 
respiratory CO2 release via two alternative and cytochrome pathways of 
mitochondrial electron transport chain. The temperature-respiration 
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relationship is represented by the widely used temperature coefficient 
Q10. For example, maintenance respiration is used for satisfying the 
metabolic needs for existing mature cells, whose temperature sensitivity 
refers to the parameter q10_mr in ELM. Temperature also affects 
photosynthetic CO2 - fixation directly through modulation of activity of 
photosynthetic enzymes and the electron transport chain of the light 
reactions, and indirectly by controlling the stomatal conductance 
through VPD. In most ecosystem models, including ELM, the peaked 
Arrhenius model is used to describe the instantaneous temperature 
response of respiration and photosynthesis, and to calculate the opti
mum temperatures of Vcmax and Jmax. Tan et al. (2017) found strong VPD 
and stomatal limitation on optimum air temperature for tropical forests, 
which implies that the temperate dependency of tropical forests can 
change during different seasons. However, the values of key photosyn
thesis parameters in most LSMs have been derived mainly from northern 
temperate and boreal trees and have lacked tropical species (Lombar
dozzi et al., 2015). The discrepancies in energy fluxes may be related to 
the simulations of canopy water-vapor conductance, which is strongly 
temperature dependent. 

We hypothesized that the plant root system would have a strong 
influence on the carbon exchange in this Amazonian palm swamp 
peatland. Larger palms may have more extensive or deeper roots and 
have a relatively lower rhizosphere oxygenation due to higher oxygen 
consumption with more root respiration, which consequently limits 
CH4-oxidation and causes increased local soil CH4 concentrations (van 
Haren et al., 2021). However, we showed that the root depth distribu
tion parameters roota and rootb were found to be less sensitive to both 
CO2 and CH4 fluxes. Therefore, roota and rootb were omitted from the 
most-sensitive-parameter list after the parameter downselection (Ta
bles 1 and S1), which indicates that root distribution may not be the 
limiting factors for the carbon dynamics in the PE-QFR site. Perhaps this 
is because the dominant tree species M. flexuosa is known to have a 
shallow rooting system with more lateral root growth. Investigations on 
the root biomass in this study area suggest that species growing in these 
palm swamp forests are very tolerant to high water table and saturated 
soil conditions (Dezzeo et al., 2021). 

For wetland simulations, the anaerobic environment is crucial for 
CH4 production and oxidation. It is mainly controlled by water table 
level and microtopography. To improve the hydrological controls on 
carbon cycle processes in ELM for the Amazonian palm swamp peatland, 
we modified the model algorithms of the soil water retention curve and 
water coverage scalar function. The improved simulations showed that 
the seasonal variation of simulated CH4 emissions followed the changes 
of water table position during the wet and dry seasons (Fig. S9). In our 
previous study of a boreal forest peatland, the simulated CH4 emissions 
were sensitive to surface water drainage rate and soil water potential 
parameters (Yuan et al., 2021a). However, in this Amazonian palm 
swamp peatland we did not find high sensitivity of CH4 emissions to 
these hydraulic parameters. One possible explanation is that the site is 
always waterlogged and the soil is near saturation for the entire year, 
which favors peat development. 

In addition, we found that there were pronounced interactions of the 
21 parameters for carbon fluxes in different seasons (Joint total sensi
tivity index >1, Fig. S10), but smaller sensitivity of ecosystem respira
tion (ER) to the parameter interactions. However, the joint total effects 
on most QoIs did not exhibit regular seasonal and interannual vari
ability. Although some parameters showed negligible main effects for 
some QoIs in different seasons, they have shown sensitivities when 
interacting with each other. For example, the main effect of canopy leaf 
area distribution (slatop) showed that it was not important to the energy 
and carbon fluxes, while its joint parameter interactions were significant 
for LE (with mp and fcur) and CO2 fluxes (with frootcn and q10_mr) in 
both wet and dry seasons, and CH4 fluxes (with fcur) in wet seasons 
(Fig. S11). This further indicates the importance of vegetation 
phenology and physiology processes to the Amazonian palm swamp 
peatland. 

3.6. Limitations and future work 

Our study provides an important early step in improving the un
derstanding of carbon dynamics of Amazonian peatlands through a 
model-measurement approach. A few limitations remain in ELM when 
predicting the energy and carbon fluxes of this peatland and will be 
addressed as additional data become available for the PE-QFR research 
site. 

Here, the model optimization was carried out by using a parameter 
sensitivity analysis given the scarcity of field observations. A potential 
limitation, therefore, is the limited range of parameter values from 
tropical peatland sites. The parameter ranges defined here were not the 
specific values for the Amazonian palm swamp peatland, but defined by 
the global values from published papers, physically constrained, +/– 
50% of the default value, or based on expert judgment. In addition, the 
improved functions of soil water retention and leaf carbon-to-nitrogen 
ratio assume the same behaviors exhibited in the PE-QFR site as other 
tropical peatlands. Detailed soil physical and plant physiological data 
also need to be investigated for this site. 

We employed a simple empirical function of the leaf C/N ratio with 
aging to describe the seasonality of CO2 fluxes. This approach may lack a 
universal mechanism for its application to other Amazonian peatlands. 
Further improvements on leaf phenological simulations still need to be 
carried out with support from leaf physiological measurements and 
more clear understanding of the drivers. In the model settings, only a 
single plant functional type of default tropical broadleaf evergreen tree 
was defined. However, different development stages were found among 
tropical broadleaf evergreen tree species. For example, palms can sus
tain a high level of LAI while producing fruits continuously (Fan et al., 
2015), which may alter LAI development and carbon allocation pro
cesses compared to other tree species. More field LAI and phenological 
observations may reduce these potential modeling uncertainties. 

The underlying mechanisms of plant-mediated CH4 transport in the 
Amazonian palm swamp peatland need to be further investigated in 
future experimental and modeling work. Large contributions to CH4 
transport from stem/shoot transport have been observed for tropical 
peatlands (Pangala et al., 2017; Teh et al., 2017; van Haren et al., 2021), 
and the contributions of different plant-tissue pathways vary widely 
across tree species (Covey and Megonigal, 2019; Putkinen et al., 2021). 
Future synchronized high-frequency CH4 measurements and lab-based 
analysis of taxonomic and functional microbes for both soil and tree 
organs should be used to help identify and address detailed CH4 pro
duction and consumption processes (Covey and Megonigal, 2019; Put
kinen et al., 2021). This would also be useful for development of the 
algorithm for microbial-based plant-mediated CH4 transport. In addi
tion, inventories of tree architectural variables, e.g., stem diameter, tree 
height and crown width, will be useful for scaling the tree CH4 emissions 
to the ecosystem level. Moreover, we did not identify the effects of 
hollows and hummocks, and only roughly assessed the site-level soil CH4 
fluxes by averaging all relevant soil CH4 flux chamber data from Her
goualc’h et al. (2020) (Fig 5). However, Hergoualc’h et al. (2020) sug
gested that the soil CH4 fluxes were affected by the microtopography 
associated with hollows and hummocks within the study area. This may 
be why we found that the discrepancy between simulated and observed 
soil CH4 fluxes varied over months. Further modeling studies to capture 
the spatial heterogeneity of CH4 fluxes caused by the microtopographic 
differences in the peatland are still needed. 

Peatlands are often regarded as stable systems and act as a net 
cooling mechanism for Earth’s climate (Frolking et al., 2006). Some 
modeling studies indicate that boreal peatlands will lose significant 
carbon in the future due to projected permafrost thaw under climate 
change (Loisel et al., 2021). However, the fate of peat carbon storage in 
the tropics remains highly uncertain (Ribeiro et al., 2021; Zhang et al., 
2017). The water balance is recognized as the main factor driving the 
peat accumulation for most peatlands (Kurnianto et al., 2015). The Sixth 
Assessment Report (AR6) from the Intergovernmental Panel on Climate 
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Change (IPCC) indicates that there will be less precipitation in the 
northwest Amazon (Iturbide et al., 2020). However, some predictions 
suggested higher precipitation for the region (Marengo and Espinoza, 
2016), highlighting the inherent uncertainty in these projections. In 
general, severe drought induces peatland degradation and carbon loss 
(Loisel et al., 2021). With robust tropics-specific peatland models, we 
can better understand how the carbon budget and detailed carbon cycle 
processes in the Amazonian palm swamp peatland will respond to 
climate variability and future climate change (Hergoualc’h et al., 2020). 
Therefore, improving the forecasting capability for this tropics-specific 
model is still urgently needed. 

4. Conclusions 

In the study, we evaluated the performance of ELM for simulating 
energy and carbon fluxes in an Amazonian palm swamp peatland. 
Several key algorithms were modified according to site-specific char
acteristics. An objective parameter optimization approach with a 
surrogate-assisted Bayesian methodology was used to optimize ELM. 
The modified functions included the soil water retention curve, water 
coverage scalar function in CH4 processes, and seasonally varying leaf 
carbon-to-nitrogen ratio function. The optimized tropics-specific model 
showed significantly improved simulations for the seasonal and diel 
patterns of energy and carbon fluxes for this tropical peatland. However, 
some biases in the simulated fluxes remain and require further research. 
Specifically, these include the underestimations for LE and over
estimation of H during the dry seasons, the underestimation of CO2 
fluxes in the daytime, and the low seasonal variability of CH4 fluxes. 
Parameter sensitivity analyses indicated that the strong controls on 
energy and carbon fluxes were mainly attributed to parameters associ
ated with vegetation activities, such as plant carbon distribution, sto
matal regulation, photosynthesis-nitrogen relationship, and leaf 
phenology. These sensitivities and the controls changed in different 
periods (i.e., wet vs dry seasons). This modeling study expanded the 
applicability of the ELM model in tropical peatlands, advanced our un
derstanding of biotic controls on the energy and carbon exchange of the 
Amazonian palm swamp peatland and identified knowledge gaps that 
need to be addressed for better prediction of carbon processes and 
budgets for tropical peatlands, e.g., the modeling bias due to the lack of 
ability to simulate CH4 transport from non-aerenchymatous tissues in 
current model. 
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Lähteenoja, O., 2013. Vegetation development in an Amazonian peatland. 
Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 242–255. 

Safta, C., Ricciuto, D.M., Sargsyan, K., Debusschere, B., Najm, H.N., Williams, M., 
Thornton, P.E., 2015. Global sensitivity analysis, probabilistic calibration, and 
predictive assessment for the data assimilation linked ecosystem carbon model. 
Geosci. Model. Dev. 8, 1899–1918. 

Saleska, S.R., Wu, J., Guan, K., Araujo, A.C., Huete, A., Nobre, A.D., Restrepo-Coupe, N., 
2016. Dry-season greening of Amazon forests. Nature 531, E4–E5. 

Sargsyan, K., Safta, C., Najm, H.N., Debusschere, B.J., Ricciuto, D., Thornton, P., 2014. 
Dimensionality reduction for complex models via Bayesian compressive sensing. Int. 
J. Uncertain. Quantif. 4. 

Shi, X., Thornton, P.E., Ricciuto, D.M., Hanson, P.J., Mao, J., Sebestyen, S.D., Griffiths, N. 
A., Bisht, G., 2015. Representing northern peatland microtopography and hydrology 
within the Community Land Model. Biogeosciences 12, 6463–6477. 

Shi, X.Y., Ricciuto, D.M., Thornton, P.E., Xu, X.F., Yuan, F.M., Norby, R.J., Walker, A.P., 
Warren, J.M., Mao, J.F., Hanson, P.J., Meng, L., Weston, D., Griffiths, N.A., 2021. 
Extending a land-surface model with Sphagnum moss to simulate responses of a 
northern temperate bog to whole ecosystem warming and elevated CO2. 
Biogeosciences 18, 467–486. 

Song, J., Miller, G.R., Cahill, A.T., Aparecido, L.M.T., Moore, G.W., 2021. Modeling 
profiles of micrometeorological variables in a tropical premontane rainforest using 
multi-layered CLM (CLM-ml). J. Adv. Model. Earth Syst. 13, e2020MS002259. 

Tan, Z., Zeng, J., Zhang, Y., Slot, M., Gamo, M., Hirano, T., Kosugi, Y., Da Rocha, H.R., 
Saleska, S.R., Goulden, M.L., 2017. Optimum air temperature for tropical forest 
photosynthesis: mechanisms involved and implications for climate warming. 
Environ. Res. Lett. 12, 054022. 

Teh, Y.A., Murphy, W.A., Berrio, J.-.C., Boom, A., Page, S.E., 2017. Seasonal variability 
in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon 
basin. Biogeosciences 14, 3669–3683. 

Thornton, P.E., Rosenbloom, N.A., 2005. Ecosystem model spin-up: estimating steady 
state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. 
Modell. 189, 25–48. 

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic 
conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898. 

van Haren, J., Brewer, P.E., Kurtzberg, L., Wehr, R.N., Springer, V.L., Espinoza, R.T., 
Ruiz, J.S., Cadillo-Quiroz, H., 2021. A versatile gas flux chamber reveals high tree 
stem CH4 emissions in Amazonian peatland. Agric. For. Meteorol. 307, 108504. 

van Lent, J., Hergoualc’h, K., Verchot, L., Oenema, O., van Groenigen, J.W., 2019. 
Greenhouse gas emissions along a peat swamp forest degradation gradient in the 
Peruvian Amazon: soil moisture and palm roots effects. Mitigation and Adaptation 
Strategies for. Glob. Change 24, 625–643. 

Werth, D., Avissar, R., 2004. The regional evapotranspiration of the Amazon. 
J. Hydrometeorol. 5, 100–109. 

Wu, J., Albert, L.P., Lopes, A.P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K.T., 
Guan, K., Stark, S.C., Christoffersen, B., Prohaska, N., 2016. Leaf development and 
demography explain photosynthetic seasonality in Amazon evergreen forests. 
Science 351, 972–976. 

Wu, J., Serbin, S.P., Ely, K.S., Wolfe, B.T., Dickman, L.T., Grossiord, C., Michaletz, S.T., 
Collins, A.D., Detto, M., McDowell, N.G., 2020. The response of stomatal 
conductance to seasonal drought in tropical forests. Glob. Chang. Biol. 26, 823–839. 

Xu, X., Elias, D.A., Graham, D.E., Phelps, T.J., Carroll, S.L., Wullschleger, S.D., 
Thornton, P.E., 2015. A microbial functional group-based module for simulating 
methane production and consumption: application to an incubated permafrost soil. 
J. Geophys. Res. 120, 1315–1333. 

Xu, X., Yuan, F., Hanson, P.J., Wullschleger, S.D., Thornton, P.E., Riley, W.J., Song, X., 
Graham, D.E., Song, C., Tian, H., 2016. Reviews and syntheses: four decades of 
modeling methane cycling in terrestrial ecosystems. Biogeosciences 13, 3735–3755. 

F. Yuan et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0021
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0021
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0022
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0022
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0022
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0023
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0023
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0024
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0024
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0024
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0024
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0025
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0025
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0025
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0026
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0026
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0026
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0032
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0032
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0032
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0034
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0034
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0039
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0039
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0039
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0039
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0043
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0043
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0043
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0044
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0044
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0044
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0044
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0049
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0049
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0051
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0064
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0065
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0065
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0066
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0067
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0068
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0069
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0069
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0069


Agricultural and Forest Meteorology 332 (2023) 109364

16

Yuan, F., Wang, Y., Ricciuto, D.M., Shi, X., Yuan, F., Brehme, T., Bridgham, S., Keller, J., 
Warren, J.M., Griffiths, N.A., 2021a. Hydrological feedbacks on peatland CH4 
emission under warming and elevated CO2: a modeling study. J. Hydrol. (Amst.) 
603, 127137. 

Yuan, F., Wang, Y., Ricciuto, D.M., Shi, X., Yuan, F., Hanson, P.J., Bridgham, S., 
Keller, J., Thornton, P.E., Xu, X., 2021b. An integrative model for soil 
biogeochemistry and methane processes. II: warming and elevated CO2 effects on 
peatland CH4 emissions. J. Geophys. Res. 126, e2020JG005963. 

Zhang, B., Tian, H., Lu, C., Chen, G., Pan, S., Anderson, C., Poulter, B., 2017. Methane 
emissions from global wetlands: an assessment of the uncertainty associated with 
various wetland extent data sets. Atmos. Environ. 165, 310–321. 

Zhang, J., Griffis, T.J., Baker, J.M., 2006. Using continuous stable isotope measurements 
to partition net ecosystem CO2 exchange. Plant Cell Environ. 29, 483–496. 

Zhuang, Q., Melillo, J.M., Sarofim, M.C., Kicklighter, D.W., McGuire, A.D., Felzer, B.S., 
Sokolov, A., Prinn, R.G., Steudler, P.A., Hu, S., 2006. CO2 and CH4 exchanges 
between land ecosystems and the atmosphere in northern high latitudes over the 
21st century. Geophys. Res. Lett. 33. 

F. Yuan et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0070
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0070
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0070
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0070
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0071
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0071
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0071
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0071
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0072
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0072
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0072
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0073
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0073
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0074
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0074
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0074
http://refhub.elsevier.com/S0168-1923(23)00058-8/sbref0074

	Evaluation and improvement of the E3SM land model for simulating energy and carbon fluxes in an Amazonian peatland
	1 Introduction
	2 Methodology
	2.1 Study site and observations
	2.2 Model description and simulation procedures
	2.3 Model improvement
	2.4 Parameter sensitivity and optimization
	2.5 Model evaluation

	3 Results and discussion
	3.1 Parameter optimization
	3.2 Net radiation and turbulent energy exchange
	3.3 Net ecosystem CO2 exchange
	3.4 Net ecosystem CH4 exchange
	3.5 Parameter controls on energy and carbon exchange
	3.6 Limitations and future work

	4 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Supplementary materials
	References


